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Persistent memory

Durable, efficient and valuable

• Persistence = resilience to power outage and software failures 

• Promising for large databases and big data analytics

• Efficient: byte-addressable and durable with direct loads and 
stores
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crash
crash

How to provide consistency?

Technology

• Intel Optane DC

• New generation supporting CXL

user_a.balance -= 100;
user_b.balance += 100;
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Failure Atomic Sections (FAS)

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash
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crash
crash

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

Revert th
e firs

t write
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Failure Atomic Sections (FAS)

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash

• Write set: modified locations in a failure atomic section 
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crash
crash

pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

Logging is complex!

write set
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Failure Atomic Sections (FAS)
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crash
crash

pstart();
LOG(?);

pend();

Reusing legacy code is almost 
impossible!

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash

• Write set: modified locations in a failure atomic section 

write set is 
unknown

Logging is complex!
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Transparency of logging

• Write-ahead redo or undo logging: write 
set specified manually by application 
developers
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PMDK Romulus

• Logging embedded in the language: write 
set collected wrapping objects with 
generics or annotations, using operator 
overloading, etc.

not transparent
not reusable

transparent
not reusable
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What about using hardware?

RAM average utilization CPU average utilization

8

• Code instrumentation can be avoided using hardware mechanisms

PAGE 
TABLE
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Copy-on-write

• memory protection 
mechanism

• interrupt handling

Dirty inspection

• dirty bits stored in page 
table entries

Page Map Logging (PML)

• write-set tracking at the 
level of a virtual machine

PMThreads
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What about using hardware?

RAM average utilization CPU average utilization

• Code instrumentation can be avoided using hardware mechanisms

• Problem: Hardware is accessible only through slow system primitives

PAGE 
TABLE
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Copy-on-write

• memory protection 
mechanism

• interrupt handling

Dirty inspection

• dirty bits stored in page 
table entries

Page Map Logging (PML)

• write-set tracking at the 
level of a virtual machine

PMThreads



We need new system primitives
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VolipMem
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Extracting the core of PMEM runtimes into new primitives: 

pmap, pstart, pend

PMEM runtimes

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set 

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

VolipMem System level
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VolipMem
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pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set 

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level
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VolipMem
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pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set 

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level

Engineering problem: 

Modifying OS paging system is difficult
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VolipMem
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pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set 

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level

Dune:  Leverage virtualization to expose 
a page table in userland



Design & Implementation
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Overall design

Python 
runtime

Rust 
runtime

C/C++ 
runtime

PMEM runtime

libvolimem

VolipMem

Language 
runtimes

pstart, pend, pmap

collect write set

C/C++ 
application

Rust 
application

Python 
application

language specific allocation, recovery, FAS
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Overall design

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python 
runtime

Rust 
runtime

C/C++ 
runtimeLanguage 

runtimes

C/C++ 
application

Rust 
application

Python 
application

language specific allocation, recovery, FAS
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VolipMem

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python 
runtime

Rust 
runtime

C/C++ 
runtimeLanguage 

runtimes

C/C++ 
application

Rust 
application

Python 
application

language specific allocation, recovery, FAS
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PMEM runtime: commit

• Environment that provides consistent PMEM operations through three primitives
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persistent memory volatile memory
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pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

write set
collect 
write set

4-step commits

1. Write set collection relies on hardware: 
Detect-On-Write and Dirty Bit Inspection

2. Preparation: occupies log entry for each dirty page

3. Logging: copies log content from volatile

4. Update: copies modification to PMEM state
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log
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update

FAS3

FAS1
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PMEM runtime: parallel configurations

• Environment that provides consistent PMEM operations through three primitives
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persistent memory volatile memory
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write set
collect 
write setprepare
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Parallelization

• logging and update phases can be 
offloaded to background threads

• write access is removed for ‘not-ready’ 
pages - logging is performed by APP only 
if necessary 
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log

T1 (APP)

T3

T2

FAS3

FAS1

FAS1

FAS2
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VolipMem

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python 
runtime

Rust 
runtime

C/C++ 
runtimeLanguage 

runtimes

C/C++ 
application

Rust 
application

Python 
application

language specific allocation, recovery, FAS
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Libvolimem
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memory layout

VCPU

guest 
thread

Kernel

libvolimem

VM

Host process
GOAL: Exposing a page table in user space to collect 
a write set without modifying Linux paging system   

• Library that transforms any process into a 
lightweight virtual machine (VM)

• Advantage: fast fault processing inside VM

• Each thread on the host = a VCPU in VM

• Libvolimem implements a layer to efficiently 
forward system calls to the host
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Memory layout
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S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page 
table

Extended page 
table

libvolimem 
page table
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Overall design

Python 
runtime

Rust 
runtime

C/C++ 
runtime

PMEM runtime

libvolimem

VolipMem

Language 
runtimes

pstart, pend, pmap

collect write set

C/C++ 
application

Rust 
application

Python 
application

language specific allocation, recovery, FAS
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Language runtimes
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• C/C++, Python and Rust - different programming models based on language 
properties

• Safety - no dangling pointers to old volatile objects after a reboot

• Ease of use - legacy code is easy to reuse after switching to PMEM

• Performance - it is possible to limit number of PMEM objects during execution 



Evaluation
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Memcached
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Load phase Run phase - recovery

YCSB A uniform distribution

• VolipMem reduces performance at most 20% comparing to native memcached

• When period of commits is higher (>1ms), VolipMem is at the same scale
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Hashmap 
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• VolipMem is up to x4 faster than PMThreads
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VolipMem: A system-level interface for PMEM

• Leverages hardware to collect the write set of a failure-atomic section 

• Extracts core PMEM features with three system primitives: 

pstart, pend, pmap

• Implemented by leveraging virtualization

•VolipMem is generic: 

• Integrated into three programming languages, libraries and applications

•VolipMem is efficient: 

• Up to more than 4x faster than PMThreads (transparent)

• At the same scale as PMDK (manual logging)
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Python dictionary

39



Appendix



Introduction EvaluationDesign & Implementation Conclusion

Standard C++ linked list 
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Standard Rust vector 
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Memory layout
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S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page 
table

Extended page 
table

libvolimem 
page table

accessible 
directly in 
userland

WD APTE entry

Dirty inspection Detect-on-write

Page 
frame
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Memory layout
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S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page 
table

Extended page 
table

accessible 
directly in 
userland

• Libvolimem GPT is initialized to 
create exact replica of the host 
address space

libvolimem 
page table
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Python: Tiny DB
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• Lightweight document oriented database implemented fully in Python

• VolipMem is between 2,200 to 40,000 faster than JSON backed DB


