
VolipMem: A System-Level PMEM Runtime

Jana Toljaga

Nicolas Derumigny, Tara Aggoun, Mathieu Bacou, Gaël Thomas

Benagil, Inria Saclay

Télécom SudParis, Institut Polytechnique de Paris

Presented by:

 Jana Toljaga

23.05.2024.

Introduction

Introduction EvaluationDesign & Implementation Conclusion

Persistent memory

Durable, efficient and valuable

• Persistence = resilience to power outage and software failures

• Promising for large databases and big data analytics

• Efficient: byte-addressable and durable with direct loads and
stores

3

crash
crash

How to provide consistency?

Technology

• Intel Optane DC

• New generation supporting CXL

user_a.balance -= 100;
user_b.balance += 100;

Introduction EvaluationDesign & Implementation Conclusion

Failure Atomic Sections (FAS)

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash

4

crash
crash

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

Revert th
e firs

t write

Introduction EvaluationDesign & Implementation Conclusion

Failure Atomic Sections (FAS)

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash

• Write set: modified locations in a failure atomic section

5

crash
crash

pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

Logging is complex!

write set

Introduction EvaluationDesign & Implementation Conclusion

Failure Atomic Sections (FAS)

6

crash
crash

pstart();
LOG(?);

pend();

Reusing legacy code is almost
impossible!

• A section of code with all-or-nothing semantics

• Logging: mandatory to restore a consistent state after a crash

• Write set: modified locations in a failure atomic section

write set is
unknown

Logging is complex!

Introduction EvaluationDesign & Implementation Conclusion

Transparency of logging

• Write-ahead redo or undo logging: write
set specified manually by application
developers

7

PMDK Romulus

• Logging embedded in the language: write
set collected wrapping objects with
generics or annotations, using operator
overloading, etc.

not transparent
not reusable

transparent
not reusable

Introduction EvaluationDesign & Implementation Conclusion

What about using hardware?

RAM average utilization CPU average utilization

8

• Code instrumentation can be avoided using hardware mechanisms

PAGE
TABLE

8

Copy-on-write

• memory protection
mechanism

• interrupt handling

Dirty inspection

• dirty bits stored in page
table entries

Page Map Logging (PML)

• write-set tracking at the
level of a virtual machine

PMThreads

Introduction EvaluationDesign & Implementation Conclusion

What about using hardware?

RAM average utilization CPU average utilization

• Code instrumentation can be avoided using hardware mechanisms

• Problem: Hardware is accessible only through slow system primitives

PAGE
TABLE

9

Copy-on-write

• memory protection
mechanism

• interrupt handling

Dirty inspection

• dirty bits stored in page
table entries

Page Map Logging (PML)

• write-set tracking at the
level of a virtual machine

PMThreads

We need new system primitives

Introduction EvaluationDesign & Implementation Conclusion

VolipMem

11

Extracting the core of PMEM runtimes into new primitives:

pmap, pstart, pend

PMEM runtimes

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

VolipMem System level

Introduction EvaluationDesign & Implementation Conclusion

VolipMem

12

pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level

Introduction EvaluationDesign & Implementation Conclusion

VolipMem

13

pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level

Engineering problem:

Modifying OS paging system is difficult

Introduction EvaluationDesign & Implementation Conclusion

VolipMem

14

pstart();
LOG(user_a);
LOG(user_b);
user_a.balance -= 100;
user_b.balance += 100;
pend();

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

pmap => map & recover the state

pstart, pend => define FAS

write-set collection

VolipMem

PMEM runtimes

PMEM runtimes

- allocator
- recovery
- FAS definition

- pmem mapping
- write-set

collection

- allocator - object recoveryPMEM runtimes

PMEM runtimes

System level

Application level

Dune: Leverage virtualization to expose
a page table in userland

Design & Implementation

Introduction EvaluationDesign & Implementation Conclusion

16

Overall design

Python
runtime

Rust
runtime

C/C++
runtime

PMEM runtime

libvolimem

VolipMem

Language
runtimes

pstart, pend, pmap

collect write set

C/C++
application

Rust
application

Python
application

language specific allocation, recovery, FAS

Introduction EvaluationDesign & Implementation Conclusion

17

Overall design

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python
runtime

Rust
runtime

C/C++
runtimeLanguage

runtimes

C/C++
application

Rust
application

Python
application

language specific allocation, recovery, FAS

Introduction EvaluationDesign & Implementation Conclusion

18

VolipMem

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python
runtime

Rust
runtime

C/C++
runtimeLanguage

runtimes

C/C++
application

Rust
application

Python
application

language specific allocation, recovery, FAS

Introduction EvaluationDesign & Implementation Conclusion

PMEM runtime: commit

• Environment that provides consistent PMEM operations through three primitives

25

persistent memory volatile memory

p
er

si
st

en
t

 s
ta

te

vo
la

ti
le

 s
ta

te

n
o

t
re

ad
y

pstart();
user_a.balance -= 100;
user_b.balance += 100;
pend();

write set
collect
write set

4-step commits

1. Write set collection relies on hardware:
Detect-On-Write and Dirty Bit Inspection

2. Preparation: occupies log entry for each dirty page

3. Logging: copies log content from volatile

4. Update: copies modification to PMEM state

prepare

re
ad

y

log

co
m

m
it

update

FAS3

FAS1

FAS1

FAS2

re
ad

y
re

ad
y

co
m

m
it

co
m

m
it

Introduction EvaluationDesign & Implementation Conclusion

PMEM runtime: parallel configurations

• Environment that provides consistent PMEM operations through three primitives

26

persistent memory volatile memory

p
er

si
st

en
t

 s
ta

te

vo
la

ti
le

 s
ta

te

n
o

t
re

ad
y

write set
collect
write setprepare

re
ad

y

co
m

m
it

Parallelization

• logging and update phases can be
offloaded to background threads

• write access is removed for ‘not-ready’
pages - logging is performed by APP only
if necessary

re
ad

y
re

ad
y

co
m

m
it

co
m

m
it

update

log

T1 (APP)

T3

T2

FAS3

FAS1

FAS1

FAS2

Introduction EvaluationDesign & Implementation Conclusion

27

VolipMem

PMEM runtime

libvolimem

VolipMem

pstart, pend, pmap

collect write set

Python
runtime

Rust
runtime

C/C++
runtimeLanguage

runtimes

C/C++
application

Rust
application

Python
application

language specific allocation, recovery, FAS

Introduction EvaluationDesign & Implementation Conclusion

Libvolimem

30

memory layout

VCPU

guest
thread

Kernel

libvolimem

VM

Host process
GOAL: Exposing a page table in user space to collect
a write set without modifying Linux paging system

• Library that transforms any process into a
lightweight virtual machine (VM)

• Advantage: fast fault processing inside VM

• Each thread on the host = a VCPU in VM

• Libvolimem implements a layer to efficiently
forward system calls to the host

Introduction EvaluationDesign & Implementation Conclusion

Memory layout

31

S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page
table

Extended page
table

libvolimem
page table

Introduction EvaluationDesign & Implementation Conclusion

32

Overall design

Python
runtime

Rust
runtime

C/C++
runtime

PMEM runtime

libvolimem

VolipMem

Language
runtimes

pstart, pend, pmap

collect write set

C/C++
application

Rust
application

Python
application

language specific allocation, recovery, FAS

Introduction EvaluationDesign & Implementation Conclusion

Language runtimes

33

• C/C++, Python and Rust - different programming models based on language
properties

• Safety - no dangling pointers to old volatile objects after a reboot

• Ease of use - legacy code is easy to reuse after switching to PMEM

• Performance - it is possible to limit number of PMEM objects during execution

Evaluation

Introduction EvaluationDesign & Implementation Conclusion

Memcached

35

Th
ro

u
gh

p
u

t
(K

o
p

s/
s)

Load phase Run phase - recovery

YCSB A uniform distribution

• VolipMem reduces performance at most 20% comparing to native memcached

• When period of commits is higher (>1ms), VolipMem is at the same scale

Introduction EvaluationDesign & Implementation Conclusion

Hashmap

36

Th
ro

u
gh

p
u

t
(K

o
p

s/
s)

• VolipMem is up to x4 faster than PMThreads

Conclusion

Introduction EvaluationDesign & Implementation Conclusion

VolipMem: A system-level interface for PMEM

• Leverages hardware to collect the write set of a failure-atomic section

• Extracts core PMEM features with three system primitives:

pstart, pend, pmap

• Implemented by leveraging virtualization

•VolipMem is generic:

• Integrated into three programming languages, libraries and applications

•VolipMem is efficient:

• Up to more than 4x faster than PMThreads (transparent)

• At the same scale as PMDK (manual logging)

38

Introduction EvaluationDesign & Implementation Conclusion

Python dictionary

39

Appendix

Introduction EvaluationDesign & Implementation Conclusion

Standard C++ linked list

41

Introduction EvaluationDesign & Implementation Conclusion

Standard Rust vector

42

Introduction EvaluationDesign & Implementation Conclusion

Memory layout

43

S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page
table

Extended page
table

libvolimem
page table

accessible
directly in
userland

WD APTE entry

Dirty inspection Detect-on-write

Page
frame

Introduction EvaluationDesign & Implementation Conclusion

Memory layout

44

S1 S1

VM

S2 S2

S1 S2

HPA

HVA GPA

GVA

Linux page
table

Extended page
table

accessible
directly in
userland

• Libvolimem GPT is initialized to
create exact replica of the host
address space

libvolimem
page table

Introduction EvaluationDesign & Implementation Conclusion

Python: Tiny DB

45

Th
ro

u
gh

p
u

t
(K

o
p

s/
s)

• Lightweight document oriented database implemented fully in Python

• VolipMem is between 2,200 to 40,000 faster than JSON backed DB

