
IO-S ETS:
Simple and efficient approaches for 

I/O bandwidth management
Francieli Boito, Guillaume Pallez, Luan Teylo, Nicolas Vidal

Université de Bordeaux, Inria, LaBRI

Per3S Workshop - June 2022



Context
● The I/O infrastructure is shared by all jobs in a supercomputer

○ “Fair-share scheduling”: applications share the bandwidth

● Performance variability due to interference from other applications

● Longer execution time, waste of compute resources

Processing nodes I/O 
nodes

Parallel File 
System



Motivation
● I/O scheduling to mitigate interference

○ control all accesses to the parallel file system

○ decide what applications can do I/O and when

● Most related work: exclusive access to the I/O infrastructure

○ requires information about application: I/O phases, amount of data, etc

● Our goal: simple scheduling heuristic

○ low cost (in computation)

○ very little information about applications



Exclusive vs. Fairshare: an example
● Two concurrent periodic applications

○ “small” or “large” I/O phases



Exclusive vs. Fairshare: an example
● Two concurrent periodic applications

○ “small” (J2) or “large” (J1) I/O phases



IO-Sets
● We propose IO-Sets, a set-based method

○ at the start of an I/O phase, the application is assigned to a set Si

○ each set Si is assigned a priority pi

○ only one application per set is allowed to do I/O

■ exclusive access within each set

■ sharing between sets

○ the available bandwidth is shared among sets according to their priorities

● We can propose heuristics in the IO-Sets method: answer two questions
○ How to assign applications to sets?

○ How to define the priority of each set?



Set-10 heuristic
● We define the witer metric for an application with n iterations

○ the average time between the beginning of two consecutive I/O phases

● Set-10 algorithm in the IO-Sets method:

○ An application is assigned to a set that corresponds to its witer magnitude order:

○ Priorities per set decrease exponentially. Set Si has pi:

● Applications with the smallest witer get the highest priority, i.e. most of the bandwidth
○ S1 gets 1/10, S2 gets 1/100, S3 gets 1/1000, …



Evaluation

● Simulated experiments with SimGrid

● >200 workloads, each of 60 applications

○ nH high-frequency jobs with witer ~ N(10,1)

○ nM medium-frequency jobs with witer ~ N(100,10)

○ nL low-frequency jobs with witer ~ N(1000, 100)

● We vary nH and nL = 40 - nH

● Random amount of data per application, ensuring a total I/O load of 0.8

● Stretch: how many times slower the application runs (compared to running by itself)



Validation

many 
low-frequency 
(long phases) 
applications

many 
high-frequency 
(short phases) 
applications



I/O performance impact



Where do results come from?
Compared to only having sets (“Set-Fairshare”) and priority-based bandwidth without sets 

(“Sharing+Priority”)



Conclusion so far
● Set-10 is always better than fair-share and exclusive

● I/O performance improved in up to 45%

● Omitted results, check our paper https://hal.inria.fr/hal-03648225/ 

○ Noise in the duration of I/O phases (aperiodic applications)

○ Variability in witer so sets are less well defined

○ Addition of a fourth profile but not a new order of magnitude

○ Set-10 is robust and performs better (or at least the same) than fair share

● witer is a robust metric because it is an average
○ easy to calculate, lightweight

○ we can adapt it to changes in the application (for example, EWMA)

https://hal.inria.fr/hal-03648225/


Practical Applicability
● How to implement I/O sets?

● We believe it should be transparent to applications

○ Intercept all application requests

○ An application agent talks to a centralized scheduler

○ Alternative: we could implement it in the intermediate I/O nodes

● How to enforce priority-based bandwidth sharing? Two ideas:

○ Weighted Fair Queuing (WFQ) request scheduling

○ Adapting the number of processes used by the application



Adapting the number of processes used for I/O



IO-S ETS:
Simple and efficient approaches for 

I/O bandwidth management
Thanks for your attention!

If you are interested, please read our paper: 

https://hal.inria.fr/hal-03648225/

https://hal.inria.fr/hal-03648225/

