
PER3S WORKSHOP, PARIS

TEN YEARS OF MOCHI DATA
SERVICES FOR HPC:
A RETROSPECTIVE

erhtj ht yhy

MATTHIEU DORIER

Mathematics and Computer Science Division
Argonne National Laboratory

May 23, 2025

PARALLEL FILE SYSTEMS
A successful example of data service

2

3

▪ A platform- or facility-wide file system must present a

general-purpose API (usually POSIX files and directories).

▪ Conservative semantics are needed for the set of applications that

might need it (e.g., directory locking for concurrent renames “just in

case”).

▪ The software must be complex to manage concurrent storage,

network, and server access, redundancy, security, high concurrency,

and much more.

▪ The Unix/Linux OS model calls for file systems to be closely tied to

the operating system for coherent access control.

Against all odds: parallel file systems are incredibly successful!

Could we use something different?

PARALLEL FILE SYSTEMS
A successful example of data service

4

ALTERNATIVES ARE EMERGING
Example: DAOS on Argonne’s Aurora

5

ALTERNATIVES ARE EMERGING
Many more data services, for many more data models

ENTER… MOCHI

▪ Started in 2015 as an effort to explore what

composition and componentization meant in the

context of HPC storage services

▪ Grew into an effort to define a methodology and

develop a set of components for building HPC data

services

▪ Inspired by cloud computing, distributed computing,

software engineering, autonomics, and HPC

technologies

Objective: empower fast and innovative research and

development in data management for HPC

HPC
Fast Transports

Scientific Data

User-level Threads

Cloud
Computing

Object Stores

Key-Value

Stores

Distributed
Computing

Group

Membership/

Comm.

Software
Engineering

Composability

Autonomics
Dist. Control

Adaptability

7

MOCHI IN ONE PICTURE
Enable rapid development of data services tailored to applications

8

MOCHI’S TECHNICAL ROOTS

Mercury

▪ HPC-oriented RPC framework

▪ Developed by ANL and The HDF Group

▪ Enables efficient access to native network

transports for remote execution

Argobots

▪ User-level threading framework

▪ Developed by ANL & collaborators

▪ Enables efficient management of concurrent,

asynchronous execution paths

Mochi launched in 2015, but two key underpinnings predate it

9

Sangmin Seo et al., “Argobots: A

lightweight low-level threading and tasking

framework”, 2018

Jerome Soumagne et al., “Advancing RPC

for Data Services at Exascale”, 2020

MOCHI’S COMPONENT MODEL

Margo (C) / Thallium (C++)

▪ Very easy to understand and program with

▪ Hides the Mercury progress loop

▪ No more callbacks! Everything is a ULT

▪ RPCs (Remote Procedure Calls) turned into ULTs

▪ Argobots takes care of scheduling to resources

Methodology

▪ Components provide a client and a server library

▪ Functionalities implemented in different ways

▪ Everything can be an RPC (even if everything

executes in the same process or node)

Simplifying component development

10

MOCHI EXAMPLES

11

 e t is not S cannot dis lay

Mofka (below)

• Streaming event service

• Analogous to Kafka but tailored to
scientific computing

HEPnOS (below)

• Domain-specific service for HEP
experiment analysis

• Presents hierarchical sorted data

amenable to analysis

Ali et al., "HEPnOS: a

Specialized Data Service for

High Energy Physics Analysis,"

2023 IEEE International Parallel

and Distributed Processing

Symposium Workshops

(IPDPSW) 2023.

https://mofka.readthedocs.io

SUCCESS STORIES FROM MOCHI

USER LEVEL FILE SYSTEMS

UnifyFS (below)

• Transient file system

• Emphasis on use of local storage
during writes

• Delayed visibility via laminate operation

[Unify22]

GekkoFS (above)

• Transient file system

• Sharded data

• Relaxed consistency in data
and metadata paths

[Vef18]

13

Colza

• Enables elastic in situ via
addition/removal of visualization nodes

• Couples to Catalyst for visualization

• Replaces VTK comm. with Mochi

[Dorier22]

SERVIZ

• Visualization as a service, support for multiple
applications

• Coupling to Ascent to leverage VTK ecosystem

• Ascent continues to use MPI

[Ramesh22]

IN SITU DATA ANALYSIS

14

SEER

• Combines performance and scientific data
visualization

• Allows multiple users to attach to simulation

and adjust analysis on the fly

• Computational steering

[Grosset20]

Chimbuko

• Performance trace data captured via TAU

• Local anomaly detection (AD) filters trace

• Provenance database allows real-time

monitoring and analysis

[Kelly20]

PERFORMANCE DATA SERVICES

15

DataStates, EvoStore, PTStore

• Data services for AI (model checkpointing,
distributed caching, etc)

[Nicolae20, Underwood23]

DataSpaces

• N-dimensional data model

• Coupling parallel applications in workflows

[Docan12]

ALTERNATIVE DATA MODELS

16

Pool

Container

Object

dkey
a
k
e
y

a
k
e
y

dkey
a
k
e
y

a
k
e
y

Object

dkey
a
k
e
y

a
k
e
y

dkey
a
k
e
y

a
k
e
y

Container

Object

dkey
a
k
e
y

a
k
e
y

dkey
a
k
e
y

a
k
e
y

Object

dkey
a
k
e
y

a
k
e
y

dkey
a
k
e
y

a
k
e
y

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

application

chfs lib

chfsd

pmem

…AND THERE ARE MORE!

CHFS [Tatebe22]

SYMBIOMON [Ramesh21]

DAOS [Liang20]

PDC [Tang18]

Copper [Lewis2024]

17

WHAT WE COULD HAVE DONE DIFFERENTLY

ARGONNE AS A TRACK RECORD IN
OPEN SOURCE SOFTWARE
Understanding what the community needs is important

19

MPICH

HACC

Parallel NetCDF

Nek5000

SOME COMPONENTS ARE
MORE POPULAR THAN OTHER
We should have understood why earlier

20

Mercury Argobots Margo Thallium ABT-IO Yokan /

SDSKV

Warabi /

Bake

Flock /

SSG

Bedrock

Mofka (and other) (Yokan) (Warabi) (Flock)

DeltaFS

DAOS

CHFS

UnifyFS

DYAD

Copper

OpenFAM

Cargo

Seer (Yokan)

GekkoFS

Datastates-AI (SSG)

Chimbuko (Sonata)

UNDERSTANDING COMPONENT ADOPTION
Why are some components not more widely adopted?

21

Lack of documentation? Too complex? Missing features? API not right?

▪ Mochi has great documentation for Margo and Thallium, documentation for other components is in progress

▪ Margo and Thallium are very easy to use, some users jump to implementing services and don’t look beyond them

▪ We assumed that missing features = users will contribute, in practice users will implement their own thing

▪ Reusable components = more generic API, but users may need something specific

MORE COMPONENTS = MORE TUNING

▪ Each component may have multiple implementations

▪ Each implementation has its own set of parameters

▪ Scheduling and thread placement options are infinite

▪ Composition choices affect performance

We should provide tools to better understand how to

tune a Mochi service, as well as auto-tuning tools

▪ HPC Storage Service Autotuning Using Variational-

Autoencoder-Guided Asynchronous Bayesian

Optimization, Dorier et al. 2022 (Cluster)

▪ We are working on such tools!

▪ Importantly: they should be intuitive enough

Knowing what configuration works best is a hassle

22

FOCUSING ON MORE COMPLEX ASPECTS?
Because a key/value component is easy to write yourself

23

Resilience Auth2 / Encryption Consistency Introspection

▪ Resilience is difficult to implement correctly, we can provide methodologies, APIs, and tools

▪ Authentication, authorization, and encryption allow multi-user services

▪ Consistency involves protocols such as Raft, two-phase commit, etc. which Mochi could provide

▪ Introspection would allow users to understand the performance of their services better

THE FUTURE OF MOCHI

THE FUTURE OF MOCHI
New directions have opened up

25

Data services for AI Energy efficient data

movements

Enhanced performance

characterization

[Carns2025] (CUG)

THE TEAM

26

Phil Carns (PI), Matthieu Dorier, Amal Gueroudji, Rob
Latham,
Shane Snyder, and Rob Ross (former PI)
Argonne National Laboratory

Tyler Reddy, Kyle Roarty, Galen Shipman,
and Qing Zheng
Los Alamos National Laboratory

George Amvrosiadis, Chuck Cranor, and Ankush Jain
Carnegie Mellon University

* also long-time contributions from Jerome Soumagne of HPE, formerly Intel, formerly The HDF Group

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF
SCIENCE, ADVANCED SCIENTIFIC COMPUTING RESEARCH, UNDER CONTRACT DE-
AC02-06CH11357.

	Slide 1: Ten years of Mochi data services for HPC: a retrospective
	Slide 2: Parallel File Systems
	Slide 3: Parallel File Systems
	Slide 4: Alternatives are emerging
	Slide 5: Alternatives are emerging
	Slide 6
	Slide 7
	Slide 8: Mochi in one picture
	Slide 9: Mochi’s Technical roots
	Slide 10: Mochi’s component model
	Slide 11: Mochi examples
	Slide 12
	Slide 13: USER LEVEL FILE SYSTEMS
	Slide 14: IN SITU DATA ANALYSIS
	Slide 15: PERFORMANCE DATA SERVICES
	Slide 16: ALTERNATIVE DATA MODELS
	Slide 17: …AND THERE ARE MORE!
	Slide 18
	Slide 19: Argonne As a track record in open source software
	Slide 20: Some components are more popular than other
	Slide 21: Understanding component adoption
	Slide 22: More components = More tuning
	Slide 23: Focusing on more Complex aspects?
	Slide 24
	Slide 25: The future of Mochi
	Slide 26: The team
	Slide 27

