Bridging the gap between cold and hot storage at scale

Valentin HONORÉ

ensIIE & Samovar BENAGIL

May 23, 2025

PER3S Workshop

Table of Contents

• HPC & Cloud: close neighbours

2 A common central feature: data

3 Bridging the gap between cold and hot storage

Numerical simulations in HPC...

Scientific applications based on numerical simulation

- Replace real experiments:
 costly, dangerous, impossible...
- ▶ Weather forecast, physics, avionics etc.
- ► Industry & Academic
- ► Intense simulation programs
 - compute-intensive : long executions (days, weeks)
 - **memory-intensive**: compute & storage

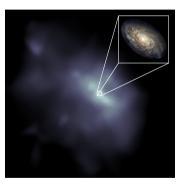


Figure: Dark Matter Halo

... that are executed on supercomputers

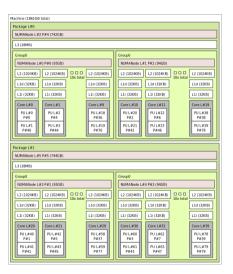


Figure: 2x Xeon CascadeLake 6230 with NVDIMMs (hwloc v2.1) Source:

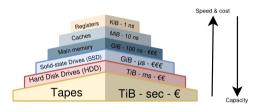


Figure: Memory hierarchy

Complex hardware and software

- ightharpoonup Linux = 25 000 000 code lines
- Overall :
 - Hardware heterogeneity
 - Very complex software stacks

Figure: Software stack of a supercomputer

Cloud Computing

- ▶ On-demand computing resources through network
- ▶ Flexibility, elasticity, disaggregation
- ► Computing & storage

GPU Instances Dur comprehensive lineup of NVIDIA GPUs, including P100 and H100, covers a wide range of computing needs.							
GPU - 3070	8 vCPUs	1 GPU	16 GB	Block Storage	2.5 Gbps	€0.98 /Hour	€715 /MONTH
RENDER-S	10 vCPUs	1 GPU	42 GB	NVMe Local Storage or Block Storage on demand	1 Gbps	€1.24 /HOUR	€891 /молтн
L4-1-24G	8 vCPUs	1 GPU	48 GB	Block Storage	2.5 Gbps	€0.75 /HOUR	€547.5 /монтн
L4-2-24G	16 vCPUs	2 GPUs	96 GB	Block Storage	5 Gbps	€1.5 /HOUR	€1,095 /монтн
L4-4-24G	32 vCPUs	4 GPUs	192 GB	Block Storage	10 Gbps	€3 /HOUR	~€2,190 /month
L4-8-24G	64 vCPUs	8 GPUs	384 GB	Block Storage	20 Gbps	€6 /HOUR	~€4,380 /молтн
L40S-1-48G	8 vCPUs	1 GPU	96 GB	Block Storage	2.5 Gbps	€1.4 /HOUR	~€1,022 /MONTH
L40S-2-48G	16 vCPUs	2 GPUs	192 GB	Block Storage	5 Gbps	€2.8 /HOUR	~€2,044 /монтн

(Source : Scaleway)

Table of Contents

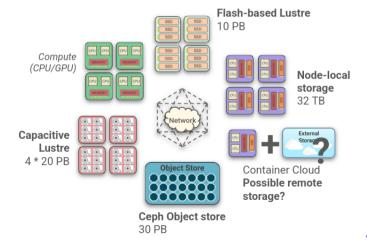
• HPC & Cloud: close neighbours

2 A common central feature: data

3 Bridging the gap between cold and hot storage

Data are getting more and more important

- ► LHC experiment at CERN (Source : CERN)
 - 30 PB of data per year
 - ≡ 1.2 million Blu-ray
 - $\equiv~250~{
 m years}$ of HD video
 - 100 PB permanently archived
- ► Cloud services, with free offer (ex: gmail)
 - 15 GB of free storage
 - 1.8 billion users
 - Free offer: 27 EB
 - \equiv > 1 billion Blu-ray
 - \equiv 225 000 years of HD video
 - Youtube: +30 000 years of HD video per year


Bilan: tsunami of data, how to store under limited budget?

G • • • • • • • • •

Distributed storage in HPC

Two main domains

- ► Hot storage : close to computing resources
- ► Cold storage : distant (network)

Distributed storage in HPC

Two main domains

- ► Hot storage : close to computing resources
- ► Cold storage : distant (network)

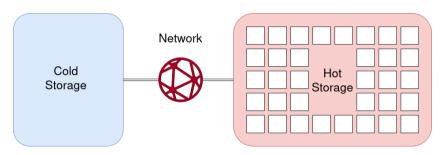


Figure: Simplified view of HPC storage

3 . 0

Distributed storage in HPC

Two main domains

- ► Hot storage : close to computing resources
- ► Cold storage : distant (network)

No integration of cold storage with the operating system \odot

- ightharpoonup Need of a **continuum**: computing \leftrightarrow cold storage
- ▶ Hot storage widely studied, not the case for cold storage
- ► Cold storage integration = industrial priority!¹
- "Electricity demand for data centers set to more than double by 2030"
 Source: International Energy Agency

G • O • • • • •

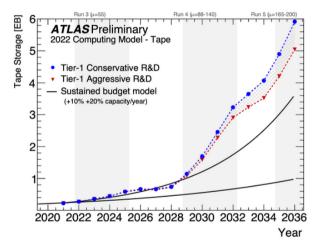
Cold storage reference: magnetic tapes

 $\approx 20+$ TB on 1000×1 km, read at 10m/sec ; 100s MB/sec

Inevitable for mass storage ex: CC-IN2P3, CERN, ECMWF, Scaleway, CEA \cdots

- © Technology with many fors (see next slide)
- \odot ... and some cons : data access (~ 10 s of seconds)

Adapted pour "Write Once Read Many"


Source: Peter GINTER

G O O O O O O

Why to use tapes? (Source: CERN)

- ▶ Writing error rate per bit
 - LTO-9 (10^{-20}) is 10 000× more reliable than a 18 TB HDD (10^{-15})
- ► Hardware failures at CERN
 - 1% disks vs. 0.005% tapes
- ▶ Separation between data and driver
 - No data loss if the driver fails
- ► Lifetime (30+ years)
- Energy
 - $10 \times$ less energy than disks at equal storage amount
 - \nearrow more capacity <u>without</u> extra energy

Example: tape storage for ATLAS (CERN)

Projected storage needs for ATLAS Tier-1 sites

(Source : CERN

3

Table of Contents

① HPC & Cloud: close neighbours

2 A common central feature: data

3 Bridging the gap between cold and hot storage

.

Bring the tapes closer to the operating system

Positioning:

- ▶ Strong operational advantages ⊕ but complex & unknown mechanical processes ⊕
- ► Objectives:
 - continuum hot \leftrightarrow cold
 - Rethink the way data are handled and stored ($\frac{1}{1}$ + $\frac{1}{1}$ cold)

Proposal: bridge the gap between tapes and computing resources

- 1. Performance analysis of magnetic tapes
- 2. Integration of tapes in the OS

Related work

- ▶ (Very) few performance studies on tape systems
- ► Theoretical aspects already treated [ICAPS'22]
- ► Tapes = brick of the I/O stack for long-term storage

G • • •

Bring the tapes closer to the operating system

Positioning:

- ▶ Strong operational advantages ⊕ but complex & unknown mechanical processes ⊕
- ► Objectives:
 - continuum hot \leftrightarrow cold
 - Rethink the way data are handled and stored ($\frac{1}{1}$ + $\frac{1}{1}$ cold)

Proposal: bridge the gap between tapes and computing resources

- 1. Performance analysis of magnetic tapes
- 2. Integration of tapes in the OS

Related work

- ▶ (Very) few performance studies on tape systems
- ► Theoretical aspects already treated [ICAPS'22]
- ► Tapes = brick of the I/O stack for long-term storage

3 . . .

Bring the tapes closer to the operating system

Positioning:

- ▶ Strong operational advantages ⊕ but complex & unknown mechanical processes ⊕
- ► Objectives:
 - continuum hot \leftrightarrow cold
 - Rethink the way data are handled and stored ($\frac{1}{1}$ + $\frac{1}{1}$ cold)

Proposal: bridge the gap between tapes and computing resources

- 1. Performance analysis of magnetic tapes
- 2. Integration of tapes in the OS

Related work

- ▶ (Very) few performance studies on tape systems
- ► Theoretical aspects already treated [ICAPS'22]
- ► Tapes = brick of the I/O stack for long-term storage

Performance analysis of tape storage systems

Goal: Better performance on tape storage

- ► Metric extraction
- ▶ Properties of internal processes (reading head acceleration, throughput etc.)
- ▶ Propose new firmware and/or sotfware APIs

Requirements:

- Hardware setup for performance evaluation [MISSING]

- Performance evaluation datasets & data analysis
- APIs for efficient tape operations

1. Performance analysis of tape storage systems

Goal: Better performance on tape storage

- ► Metric extraction
- ▶ Properties of internal processes (reading head acceleration, throughput etc.)
- ▶ Propose new firmware and/or sotfware APIs

Requirements:

- Hardware setup for performance evaluation [MISSING]

- Performance evaluation datasets & data analysis
- APIs for efficient tape operations

Integration of tapes in the OS

Objective: Software support of tapes in the OS

- ▶ Use the previous APIs
- ▶ Proactively optimize and reorder the requests to the tape device
 - data-packing on an application-based, pre-fetching, data-buffering, etc.
- ▶ New data structures to optimize the storage of I/O data on tapes

Requirements:

- Hardware setup for performance evaluation [MISSING]
- Efficient tape operation APIS [MISSING]

- Piece of software smartly connecting tape drive's firmware and OS
- Evaluation setup

Integration of tapes in the OS

Objective: Software support of tapes in the OS

- ▶ Use the previous APIs
- ▶ Proactively optimize and reorder the requests to the tape device
 - data-packing on an application-based, pre-fetching, data-buffering, etc.
- ▶ New data structures to optimize the storage of I/O data on tapes

Requirements:

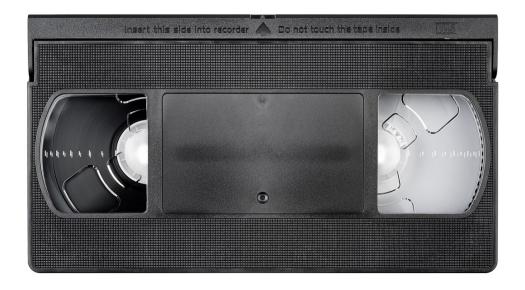
- Hardware setup for performance evaluation [MISSING]
- Efficient tape operation APIS [MISSING]

- Piece of software smartly connecting tape drive's firmware and OS
- Evaluation setup

A very collaborative roadmap

Strong potential for industrial collaborations

- ▶ Need of real use-cases & guidance
- ▶ Joint project BPI/Inria "HyperScaleway"


Ongoing collaboration with CEA

- ► ANR project submission with P. Deniel
- ▶ Objective: hardware acquisition & initiate the work on the two axis

How to scale to production challenges?

- ▶ By working with an industrial
 - that is willing to share, study & modify current strategies
- ► Focus on a demonstrator (scientific app, user profile etc)
- ► ECMWF? Scaleway? Atempo? Come discuss with us!

Thank you for your attention!

