
Handling IO data with PDI and Optimizing away IO
with PDI/Deisa

GUEROUDJI Amal (CEA), BIGOT Julien (CEA), RAFFIN Bruno (INRIA),

Karol Sierociński (PSNC), Kacper Sinkiewicz (PSNC),

Yacine Ould-Rouis (CNRS)

1

2

Introduction :

>> Several ways/tools to handle generated data by scientific

applications:

>> IO tools (HDF5 / PHDF5, NetCDF4 / pNetCDF4, SIONlib, …)

>> Workflow management systems(FlowVR, Melissa, …)

>> Fault tolerance (FTI, …)

>> Data analysis frameworks(Dask, …)

3

Introduction :

>> The good thing is that we have choice

>> The bad thing is that we need to change the application

code every little change in the data we want to manage and the

way we manage it.

4

Part I : PDI Data interface

5

PDI Data Interface :

>> PDI Data Interface decouples the simulation codes from data

management (IOs, in situ/ in transit analytics, fault tolerance,

workflow integration) concerns.

>> With PDI: Do it Once, Do It Right, Use it Everywhere

6

PDI Data Interface:

>> We have three main parts :

■ Annotated code with call to PDI API(initialize, share,

reclaim, …)

■ YAML configuration file (to describe the data layout

and plugins)

■ Plugins (to perform the needed job ex HDF5, Pycall ...)

PDI Data Interface
Overview:

7

Data sharing

Shared data

Calling events

Called event

PDI user API:

8

>> All PDI functions that user can call are:

● PDI_init

● PDI_share

● PDI_reclaim

● PDI_release

● PDI_expose

● PDI_access

● PDI_event

● PDI_multiexpose

● PDI_finalize

PDI specification tree (Ymal):

9

● types: specifies user-defined datatypes,

● data & metadata: specify the type of the data in buffers

exposed by the application; for metadata, PDI keeps a

copy while it only keeps references for data,

● plugins: specifies the list of plugins to load and their

configuration,

● plugin_path: specifies the path to a directory where PDI

should search for plugins,

● logging: specify logger properties,

● additional sections are ignored.

PDI Plugins:

10

>> Builtin plugins:

● IOs: decl’hdf5, decl’NetCDF, SIONlib

● Fault tolerance: FTI

● Trace and debugging: trace

● Generic: mpi, user-code, pycall, set-value, serialize

>> User defined plugins:

● Sensei, FlowVR, Melissa, Deisa

Example:

11

12

Part II : DEISA Plugin

13

Dask-Enabled In Situ Analytics (DEISA):

>> Offers support for in situ analytics through Dask distributed

>> Brings the performance of in situ and the ease-of-use of post

hoc processing together

>> Couples HPC and Big data fields

DEISA Overview:

14

15

DEISA Overview:

Analytics with DEISA:

16

17

DEISA Overview:

Simulation instrumentation:

18

Performance evaluation:

19

>> Ruche supercomputer :

■ 192 nodes (2 CPUs 20 cores each, 180 GB)

■ Omni-Path 100 Gbit/s

■ Spectrum Scale GPFS (IOs rate: 9 GB/s)

>> Mini-app :

■ 2D heat solver

■ Incremental Principal Component Analysis

Performance evaluation

20

86%

24%

x3

High

variability

Stability

x16

Detailed performance evaluation

21

Conclusion

22

>> DEIS Dask-Enabled In Situ Analytics:

>> Leverages task-based programming model for in situ

processing

>> Ease-of-use & performance gain

>> PDI Data Interface :

>> Unified interface for IO and data handeling

>> Decouples data handling concerns from scientific

applications

PDI documentation & support:

23

>> PDI official site: https://pdi.dev/master/index.html

>> PDI slack channel: https://join.slack.pdi.dev/

>> DEISA paper: Dask-Enabled In Situ Analytics (HAL)

https://pdi.dev/master/index.html
https://join.slack.pdi.dev/

24

● GUEROUDJI Amal(CEA)

○ amal.gueroudji@cea.fr

● BIGOT Julien (CEA)

○ julien.bigot@cea.fr

● RAFFIN Bruno (INRIA)

○ bruno.raffin@inria.fr

mailto:amal.gueroudji@cea.fr
mailto:julien.bigot@cea.fr
mailto:bruno.raffin@inria.fr

