

Handling IO data with PDI and Optimizing away IO with PDI/Deisa

 $\bullet \bullet \bullet$

<u>GUEROUDJI Amal (CEA)</u>, BIGOT Julien (CEA), RAFFIN Bruno (INRIA), Karol Sierociński (PSNC), Kacper Sinkiewicz (PSNC), Yacine Ould-Rouis (CNRS)

Introduction :

>> Several ways/tools to handle generated data by scientific applications:

- >> IO tools (HDF5 / PHDF5, NetCDF4 / pNetCDF4, SIONlib, ...)
- >> Workflow management systems(FlowVR, Melissa, ...)
- >> Fault tolerance (FTI, ...)
- >> Data analysis frameworks(Dask, ...)

Introduction :

>> The good thing is that we have choice

>> The bad thing is that we need to change the application code every little change in the data we want to manage and the way we manage it.

PDI Data Interface :

>> PDI Data Interface decouples the simulation codes from data management (IOs, in situ/ in transit analytics, fault tolerance, workflow integration) concerns.

>> With PDI: Do it Once, Do It Right, Use it Everywhere

PDI Data Interface:

- >> We have three main parts :
 - Annotated code with call to PDI API(initialize, share, reclaim, ...)
 - YAML configuration file (to describe the data layout and plugins)
 - *Plugins* (to perform the needed job ex HDF5, Pycall ...)

PDI Data Interface Overview:

PDI user API:

>> All PDI functions that user can call are:

- PDI_init
- PDI_share
- PDI_reclaim
- PDI_release
- PDI_expose
- PDI_access
- PDI_event
- PDI_multiexpose
- PDI_finalize

PDI specification tree (Ymal):

- types: specifies user-defined datatypes,
- data & metadata: specify the type of the data in buffers exposed by the application; for metadata, PDI keeps a copy while it only keeps references for data,
- plugins: specifies the list of plugins to load and their configuration,
- plugin_path: specifies the path to a directory where PDI should search for plugins,
- logging: specify logger properties,
- additional sections are ignored.

PDI Plugins:

- >> Builtin plugins:
 - IOs: *decl'hdf5, decl'NetCDF, SIONlib*
 - Fault tolerance: *FTI*
 - Trace and debugging: *trace*
 - Generic: mpi, *user-code*, *pycall*, *set-value*, *serialize*
- >> User defined plugins:
 - Sensei, FlowVR, Melissa, <u>Deisa</u>

MPI_Ini	t(&argc, &argv);
PDI_ini	<pre>t(PC_parse_path("pdi_spec.yml"));</pre>
int ran	k; PDI_Comm_rank(MPI_COMM_WORLD, &r
config_	t cfg = read_config("simulation.yml
// shar	e one-off configuration
PDI_mul	ti_expose("init",
"cf	g", &cfg, PDI_OUT,
"ra	nk", &rank, PDI_OUT,
NUL	L);
// our	temperature field
double*	<pre>temp = malloc(sizeof(double) *</pre>
	cfg.loc[0] * cfg.loc
initial	ize(temp);
11 main	loop
// main	
for (in	t step=0; ii <nb_steps; ++step)="" th="" {<=""></nb_steps;>
for (in do_co	t step=0; ii <nb_steps; ++step)="" mpi_comm_world);<="" mpute(temp,="" th="" {=""></nb_steps;>
for (in do_co // sh	nt step=0; ii <nb_steps; ++step)="" are="" at="" data="" every="" iteration<="" mpi_comm_world);="" mpute(temp,="" td="" {=""></nb_steps;>
for (in do_co // sh PDI_m	<pre>ht step=0; ii<nb_steps; ++step)="" are="" at="" data="" every="" iteration="" mpi_comm_world);="" mpute(temp,="" pre="" ulti_expose("iter",<="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" are="" at="" data="" every="" iteration="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,<="" pre="" step",="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" are="" at="" data="" every="" iteration="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,="" pdi_out,<="" pre="" step",="" temp",="" temp,="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m "	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" aare="" at="" data="" every="" iteration="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,="" pre="" step",="" temp",="" temp,="" ull);<="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m " NPI_B	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" aare="" arrier(mpi_comm_world);<="" at="" data="" every="" iteration="" iull);="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,="" pre="" step",="" temp",="" temp,="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m " MPI_B }	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" aare="" arrier(mpi_comm_world);<="" at="" data="" every="" iteration="" iull);="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,="" pre="" step",="" temp",="" temp,="" {=""></nb_steps;></pre>
for (in do_co // sh PDI_m " MPI_B } free(te	<pre>ht step=0; ii<nb_steps; &step,="" ++step)="" aare="" aarrier(mpi_comm_world);="" at="" data="" emp);<="" every="" iteration="" iull);="" mpi_comm_world);="" mpute(temp,="" multi_expose("iter",="" pdi_out,="" pre="" step",="" temp",="" temp,="" {=""></nb_steps;></pre>

2	<pre>metadata: { step: int, cfg: config_t, rank: int }</pre>				
	data:				
4.1	gtemp: #< virtual global 3D array (t, x, y)				
50	type: array				
	subtype: double				
	size:				
8	- inf #< t dimension is infinite				
	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'				
	- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'				
	temp: # the main temperature field				
	type: array				
	subtype: double				
41	size: ['\$cfg.loc[0]', '\$cfg.loc[1]']				
5	<pre>+map_in: # map as a slice in gtemp</pre>				
	array: gtemp				
	size: [1, '\$cfg.loc[0]', '\$cfg.loc[1]']				
8.	start:				
	- \$step				
	- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'				
	- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'				
2	plugins:				
3	mpi: -				
9	decl_hdf5:				
5	- file: data.h5				
	write:				
	gtemp:				
8	when: '\$step>0'				
9	communicator: \$MPI_COMM_WORLD				

Dask-Enabled In Situ Analytics (DEISA):

- >> Offers support for in situ analytics through Dask distributed
- >> Brings the performance of in situ and the ease-of-use of post hoc processing together
- >> Couples HPC and Big data fields

DEISA Overview:

DEISA Overview:

- import dask.array as da
- 2 from dask_ml.decomposition import IncrementalPCA
- 3 **import** yaml, json
- 4 **import** deisa

```
5 # Connect to Dask
```

```
6 sched = json.load(open('sched.json'))
```

7 client = dask.distributed.Client(sched["address"])

```
8 # load the simulation configuration
```

```
9 simu = yaml.load(open('simulation.yml'))
```

```
# Get data from DEISA
```

```
gtemp = deisa.Adapter(client)['gtemp']
```

```
for step in range(0, simu['timesteps']):
```

```
pca.fit(gtemp[step,:,:])
```

```
print (pca.explained_variance_)
```

```
print (pca.explained_variance_)
```


DEISA Overview:

MP:	[_Init(&argc, &argv);
PD:	<pre>[_init(PC_parse_path("pdi_spec.yml"));</pre>
int cor //	<pre>: rank; PDI_Comm_rank(MPI_COMM_WORLD, &ran ifig_t cfg = read_config("simulation.yml") share one-off configuration</pre>
PD:	multi_expose("init", "cfg", &cfg, PDI_OUT, "rank", &rank, PDI_OUT,
11	our temperature field
de	ble temp = malloc(sizeof(double) +
aut	cfa loci01 + cfa loci1
in	itialize(temp):
11	main loop
for	: (int step=0; ii <nb_steps; ++step)="" {<br="">do_compute(temp, MPI_COMM_WORLD); // share data at every iteration</nb_steps;>
I	DI_multi_expose("iter",
	"step", &step, PDI_OUT,
	"temp", temp, PDI_OUT,
	NULL);
1	<pre>IPI_Barrier(MPI_COMM_WORLD);</pre>
}	
fre	e(temp);
	finalize().
PD:	();

<pre>metadata: { step: int, cfg: config_t, rank: int }</pre>
data:
gtemp: #< virtual global 3D array (t, x, y)
type: array
subtype: double
size:
- inf #< t dimension is infinite
- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'
- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'
temp: # the main temperature field
type: array
subtype: double
<pre>size: ['\$cfg.loc[0]', '\$cfg.loc[1]']</pre>
+map_in: # map as a slice in gtemp
array: gtemp
<pre>size: [1, '\$cfg.loc[0]', '\$cfg.loc[1]']</pre>
start:
- \$step
- '\$cfg.loc[0] * (\$rank % \$cfg.proc[0])'
- '\$cfg.loc[1] * (\$rank / \$cfg.proc[0])'
plugins:
deisa:

- scheduler_file: "/home/user/xp/sched.json"
- transfer: { gtemp: { when: '\$step>0' } }

Performance evaluation:

- >> Ruche supercomputer :
 - 192 nodes (2 CPUs 20 cores each, 180 GB)
 - Omni-Path 100 Gbit/s
 - Spectrum Scale GPFS (IOs rate: 9 GB/s)
- >> Mini-app :
 - 2D heat solver
 - Incremental Principal Component Analysis

Performance evaluation

Configuration	128+16	256+32	512+64	
MPI processes	128	256	512	
Dask workers	16	32	64	
MPI nodes	4	8	16	
Dask worker nodes	1	2	4	
Global data size	16 GiB	32 GiB	64 GiB	
Dask generated tasks	15210	29010	55150	

5

Detailed performance evaluation

Conclusion

>>

PDI Data Interface :

- >> Unified interface for IO and data handeling
- >> Decouples data handling concerns from scientific applications

- Dask-Enabled In Situ Analytics:
- >> Leverages task-based programming model for in situ processing
- >> Ease-of-use & performance gain

PDI documentation & support:

>> PDI official site: <u>https://pdi.dev/master/index.html</u> >> PDI slack channel: <u>https://join.slack.pdi.dev/</u> >> DEISA paper: Dask-Enabled In Situ Analytics (HAL)

- GUEROUDJI Amal(CEA)
 - <u>amal.gueroudji@cea.fr</u>
- BIGOT Julien (CEA)
 - julien.bigot@cea.fr
- RAFFIN Bruno (INRIA)
 - <u>bruno.raffin@inria.fr</u>