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Context
Data Explosion and the Shift to ICN

• 149 ZB of data created in 2024 ➜ Projected 394 ZB by 2028 [1].

• Traditional IP networks struggle with Scalability and Efficiency [2, 3].

• ICN (Information-Centric Networking) [4] addresses this via:

• Content-based addressing & In-network caching

→The need for caching strategies to improve performance & scalability

Same references as in the paper
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Context
Caching Challenges: Node and Network Perspectives

Node-side (Centralized Strategies):

• Storage demand grows faster than deployment capacity [7].

• Multi-tier architectures (DRAM, SSD, HDD) complicate caching due to varying 

costs, lifespans, and performance [8-10].

• User-specific Service Level Agreements - SLAs define performance expectations 

[4], but most caching approaches ignore per-user QoS [5].

Network-side (Distributed Strategies):

• High energy and bandwidth costs associated with data movement [11].

• QoS constraints (latency, throughput …) via SLAs.

• Caching strategies overlook QoS, limiting overall efficiency.

Same references as in the paper
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1. How do we design a multi-tier cache for applications 

that require different quality of service ? 

2. How can we design a distributed caching strategy that 

reduces redundancy and cost?

Problems Statements
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Category Centralized Distributed

Criteria Recency Frequency QoS Heterogeneity Cost Redundancy Popularity Energy

LRU ✓

LFU ✓

LIRS [12], ARC [13], LeCar [26], LHD 

[14],autocache [27], CALC [15], 

ML-LIRS [28],Cacheus [16], SS-LRU 

[17], GL-Cache [29],Baleen [18]

✓ ✓

Flashield [30] ✓ ✓ ✓

QM-ARC [19] ✓ ✓ ✓ ✓

LCE/LCD [20] ✓ ✓

MPC [31], MAGIC [32], CPCCS 

[23],PDPU [24], CPCache [25]
✓ ✓

CL2SM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

State of the art
Why Current Caching Falls Short: Node and Network Perspectives

Category Centralized Distributed

Criteria Recency Frequency QoS Heterogeneity Cost Redundancy Popularity Energy

LRU ✓

LFU ✓

LIRS [12], ARC [13], LeCar [26], LHD 

[14],autocache [27], CALC [15], 

ML-LIRS [28],Cacheus [16], SS-LRU 

[17], GL-Cache [29],Baleen [18]

✓ ✓

Flashield [30] ✓ ✓ ✓

Category Centralized Distributed

Criteria Recency Frequency QoS Heterogeneity Cost Redundancy Popularity Energy

LRU ✓

LFU ✓

LIRS [12], ARC [13], LeCar [26], LHD 

[14],autocache [27], CALC [15], 

ML-LIRS [28],Cacheus [16], SS-LRU 

[17], GL-Cache [29],Baleen [18]

✓ ✓

Flashield [30] ✓ ✓ ✓

QM-ARC [19] ✓ ✓ ✓ ✓

Category Centralized Distributed

Criteria Recency Frequency QoS Heterogeneity Cost Redundancy Popularity Energy

LRU ✓

LFU ✓

LIRS [12], ARC [13], LeCar [26], LHD 

[14],autocache [27], CALC [15], 

ML-LIRS [28],Cacheus [16], SS-LRU 

[17], GL-Cache [29],Baleen [18]

✓ ✓

Flashield [30] ✓ ✓ ✓

QM-ARC [19] ✓ ✓ ✓ ✓

LCE/LCD [20] ✓ ✓

MPC [31], MAGIC [32], CPCCS 

[23],PDPU [24], CPCache [25]
✓ ✓

Same references as in the paper
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Context
ARC - Adaptive Cache Replacement 

• ARC - Adaptive Cache Replacement [6]:

• One of the most popular and efficient generic algorithms in the rich caching literature.

• ARC maintains two LRU lists: T1 contains objects that have only been requested once, and T2 contains objects that 

have been requested at least twice. 

• ARC uses two LRU ghost lists: B1 and B2, which contain references to data that has been evicted from T1 and T2, 

respectively.

• Cache miss → Insert in Most Recently Used-MRU position in T1.

• Hit in T1, T2, B1, B2 → Promote data to MRU position in T2. 

• ARC dynamically adapts P, the size of the list T1 (size of T2 = cache size - P). Hit in B1 → Increase in P. Hit in B2 →

decrease in P.

• ARC does not take QoS into account and is originally designed for single-tier cache.

C A C H E

T1 : Recent Cache Entries T2 : Frequently-Used Items

H I S T O R Y

B1 : evicted from T1 B2 : evicted from T2 

LRU LRUMRUMRU

Same references as in the paper
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QM-ARC
QoS-aware, Multi-tier ARC policy

• QM-ARC improves upon ARC in two key areas:

• Multi-Tier Caches: QM-ARC supports heterogeneous

memory systems through dynamic local and global 

cache list size adjustments across the tiers using βi.

• QoS-Based Caching: QM-ARC integrates QoS by 

adopting SLA and penalty-based management, from 

the Cloud, using priority levels to calculate the index 

for insertions and promotions using γk.
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QM-ARC
Explained

• Index calculation for insertion and promotion based on QoS using γk = Penaltyk / Penalty0

• Proportional size adjustment of the global lists, distributed between tiers using βi = |tieri| / |tier1|

For every 
data ‘x’

T2
Cache 

miss 
T1, T2, 

B1, B2

Promote ‘x’ to 

MRU-T2 

Insert ‘x’ to 

MRU-T1 

‘x’ High 
priority

Cache 

miss 

‘x’ lower 
priority

T1,
B1, B2

Insert ‘x’ to 

Insert POS-T1 

Promote ‘x’ to 

Insert POS -T2 

Promote ‘x’ to 

Promote POS-T2 
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• Our proposed CL2SM caching strategy is composed of three core modules:

1. Popularity Estimation:

• Each node maintains per-item request counters that are incremented with 

every request (even if not cached)

• Popularity is calculated only for cached items:

Popularity k =
Requests for data k

Requests for all data in current node

2. Cost Evaluation:

• Determines the benefit of caching each item based on a Gain vs. Loss 

principle:

• Gain = (Local Popularity) × (Retrieval Cost Saved by Caching)

• Loss = (Caching Cost of the Item) + (Cost of Evicting an Existing Item)

• If Gain > Loss, the item with the lowest gain in the cache is evicted to make 

space.

3. Enhanced QM-ARC:

• Evicts data based on both recency and retrieval cost.

• From the least recently used 10%, we remove the cheapest item to re-fetch.

CL2SM
Cache Less to Save More
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• Caching cost: The cost incurred when storing data locally, including device depreciation and the 

energy consumed during read and write operations.

• Retrieval cost: The cost of fetching data from remote nodes when it is not cached locally. This includes 

band-width usage, energy for routing and forwarding, and potential penalties for SLA violation.

CL2SM
Cost Model

Caching 

Cost

Depreciation 

Cost

Storage Energy 

Cost

Retrieval 

Cost

Bandwidth 

Cost

Penalty 

Cost

Retrieval 

Energy Cost

Router Energy 

Cost

Link Energy 

Cost
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CL2SM
Recapitulative

ICN Architecture
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Evaluation : QM-ARC

• Simulator:

• Implementation of a cache simulator with Simpy a discrete event simulation framework based on 

standard Python.

• Link to the simulator: https://github.com/Multi-Tier-Cache-Simulator/MultiTierCacheSimulator

• Methodology:

• Experiment: vary cache proportion as a function of dataset size [0.5% - 10%].   

• Traces: use of Zif-like synthetic and real traces (IBM and Jedi [28]).

• Solutions compared: QM-ARC and LRU, LFU, Random, Priority-LRU[16], M-ARC.

• Evaluation criteria: penalty, overall hit rate, hit rate per priority level 

• Two priority levels: 20% of the data is high priority. 

• System: 2-tiers, the first one is DRAM, the second is SSD, the size of the DRAM is a fifth of the SSD

https://github.com/Multi-Tier-Cache-Simulator/MultiTierCacheSimulator
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Results: QM-ARC

• Penalty: 

• QM-ARC cuts penalty by 80% as cache size grows.

• Global Hit Ratio: 

• M-ARC & QM-ARC lead with a 48% increase.

• High-Priority Hit Rate: 

• QM-ARC boosts hits by 67%, leveraging the fastest tier.

• Low-Priority Hit Rate: 

• M-ARC outperforms as QM-ARC favors high-priority 

data—validating its QoS strategy.
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Evaluation : CL2SM

• Simulator:

• Icarus[37] a Python-based discrete-event simulator developed for ICN, focusing on the performance 

evaluation of caching mechanisms.

• Link to the simulator: https://github.com/LydiaNosali/icarus/tree/qmarc

• Methodology:

• Experiments: 

• Experiment 1: vary cache proportion as a function of dataset size [0.05% - 0.3%].  

• Experiment 2: vary content distribution alpha of the Zipf Law [0.8, 1.2, 2.0]

• Experiment 3: vary topologies [GEANT and GARR].

• Solutions compared: CL2SM and LCE, LCD, Prob-Cache [21], CL4M [24], CPCache [25].

• Evaluation criteria: Cost per request, Global hit rate, Cache Hit Ratio Cost Product (CHRCP), Latency

• Two priority levels: 20% of the data is high priority. 

• System: 2-tiers, the first one is DRAM, the second is SSD, the size of the DRAM is a fifth of the SSD

https://github.com/LydiaNosali/icarus/tree/qmarc
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Results: CL2SM

• CL2SM balances caching and retrieval costs, 
offering a trade-off between storage 
overhead and access efficiency.

• Caching more does not necessarily mean 
better performance.

• Strong performance at moderate skew (𝛼 =
1.2), where both cost and popularity are 
relevant.

• CL2SM adapts effectively to diverse network 
structures as CHRCP is stable. 
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Conclusion and Perspective

Summary:

• Design of CL2SM, a unified caching algorithm for ICN that:

• Integrates centralized and distributed caching strategies

• Uses content popularity + cost model (energy, transmission, SLA penalties)

• Supports multi-tier storage with the use of QM-ARC as a replacement strategy

Benefits:

• Adaptive & cost-efficient

• QoS-aware, models real device behavior

• Promotes performance & sustainability

For future work:

• Reduce carbon footprint of caching
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Thank you for your attention ! 



24

References

[1] T. Petroc, “Volume of data/information created, captured, copied, andconsumed worldwide from 2010 to 2023, with forecasts from 2024 to2028. tech. rep,” 2024.

[2] S. A. Mohammed and A. L. Ralescu, “Future internet architectures onan emerging scale—a systematic review,” Future Internet, vol. 15, no. 5,p. 166, 2023.

[3] A. Anjum, P. Agbaje, A. Mitra, E. Oseghale, E. Nwafor, and H. Olu-fowobi, “Towards named data networking technology: Emerging ap-plications, use cases, and challenges for secure 

data communication,”Future Generation Computer Systems, vol. 151, pp. 12–31, 2024.

[4] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,“A survey of information-centric networking,” IEEE CommunicationsMagazine, vol. 50, no. 7, pp. 26–36, 2012.

[5] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo, D. Saucez,T. Schmidt, and M. Waehlisch, “Rfc 7927: Information-centric network-ing (icn) research challenges,” URL https://tools. ietf. 

org/html/rfc7927,2016.

[6] G. White and G. Rutz, “Content delivery with content-centric network-ing,” CableLabs, Strategy & Innovation, pp. 1–26, 2016.

[7] Z. Tang, Y. Wang, X. He, L. Zhang, X. Pan, Q. Wang, R. Zeng, K. Zhao,S. Shi, B. He et al., “Fusionai: Decentralized training and deploying llmswith massive consumer-level gpus,” arXiv preprint 

arXiv:2309.01172,2023.

[8] M. Soltaniyeh, V. Lagrange Moutinho Dos Reis, M. Bryson, X. Yao,R. P. Martin, and S. Nagarakatte, “Near-storage processing for solid statedrive based recommendation inference with 

smartssds®,” in Proceedingsof the 2022 ACM/SPEC on International Conference on PerformanceEngineering, 2022, pp. 177–186.

[9] L. Zhang, R. Karimi, I. Ahmad, and Y. Vigfusson, “Optimal dataplacement for heterogeneous cache, memory, and storage systems,”Proceedings of the ACM on Measurement and 

Analysis of ComputingSystems, vol. 4, no. 1, pp. 1–27, 2020.

[10] J. Boukhobza, S. Rubini, R. Chen, and Z. Shao, “Emerging nvm:A survey on architectural integration and research challenges,” ACMTrans. Des. Autom. Electron. Syst., vol. 23, no. 2, nov

2017. [Online].Available: https://doi-org.ins2i.bib.cnrs.fr/10.1145/3131848

[11] J. Li, B. Liu, and H. Wu, “Energy-efficient in-network caching forcontent-centric networking,” IEEE Communications Letters, vol. 17,no. 4, pp. 797–800, 2013.

[12] S. Jiang and X. Zhang, “Lirs: An efficient low inter-reference recencyset replacement policy to improve buffer cache performance,” ACMSIGMETRICS Performance Evaluation Review, 

vol. 30, no. 1, pp. 31–42, 2002.

[13] N. Megiddo and D. S. Modha, “Arc: A self-tuning, low overheadreplacement cache.” in Fast, vol. 3, 2003, pp. 115–130.

[14] N. Beckmann, H. Chen, and A. Cidon, “{LHD}: Improving cachehit rate by maximizing hit density,” in 15th USENIX Symposium onNetworked Systems Design and Implementation (NSDI 18), 

2018, pp.389–403.

[15] M. Kachmar and D. Kaeli, “Calc: A content-aware learning cache forstorage systems,” in 2021 IEEE International Conference on Network-ing, Architecture and Storage (NAS). IEEE, 2021, 

pp. 1–8.

[16] L. V. Rodriguez, F. Yusuf, S. Lyons, E. Paz, R. Rangaswami, J. Liu,M. Zhao, and G. Narasimhan, “Learning cache replacement with{CACHEUS},” in 19th USENIX Conference on File and 

Storage Tech-nologies (FAST 21), 2021, pp. 341–354.

[17] C. Li, M. Wu, Y. Liu, K. Zhou, J. Zhang, and Y. Sun, “Ss-lru: a smartsegmented lru caching,” in Proceedings of the 59th ACM/IEEE DesignAutomation Conference, 2022, pp. 397–402.

[18] D. L.-K. Wong, H. Wu, C. Molder, S. Gunasekar, J. Lu, S. Khand-kar, A. Sharma, D. S. Berger, N. Beckmann, and G. R. Ganger,“Baleen:{ML} admission & prefetching for flash caches,” in 

22ndUSENIX Conference on File and Storage Technologies (FAST 24), 2024,pp. 347–371.

[19] L. Ait-Oucheggou, S. Rubini, A. Battou, and J. Boukhobza, “QM-ARC: Qos-aware multi-tier adaptive cache replacement strategy,” FutureGeneration Computer Systems, vol. 163, p. 

107548, 2025.

[20] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,and R. L. Braynard, “Networking named content,” in Proceedings of the5th international conference on Emerging 

networking experiments andtechnologies, 2009, pp. 1–12.

https://doi-org.ins2i.bib.cnrs.fr/10.1145/3131848


25

References

[21] I. Psaras, W. K. Chai, and G. Pavlou, “Probabilistic in-network cachingfor information-centric networks,” in Proceedings of the second editionof the ICN workshop on Information-centric 

networking, 2012, pp. 55–60.

[22] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache “less for more” ininformation-centric networks (extended version),” Computer Communi-cations, vol. 36, no. 7, pp. 758–770, 2013.

[23] M. A. Naeem, S. A. Nor, S. Hassan, and B.-S. Kim, “Compound popularcontent caching strategy in named data networking,” Electronics, vol. 8,no. 7, p. 771, 2019.

[24] B. Nour, H. Khelifi, H. Moungla, R. Hussain, and N. Guizani, “Adistributed cache placement scheme for large-scale information-centricnetworking,” IEEE Network, vol. 34, no. 6, pp. 126–132, 

2020.

[25] N. Hubballi and P. Chaudhary, “Cpcache: Cooperative popularity basedcaching for named data networks,” in 2024 International Conference onInformation Networking (ICOIN). IEEE, 

2024, pp. 379–384.

[26] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-gaswami, M. Zhao, and G. Narasimhan, “Driving cache replacementwith {ML-based}{LeCaR},” in 10th USENIX Workshop on 

Hot Topicsin Storage and File Systems (HotStorage 18), 2018.

[27] H. Herodotou, “Autocache: Employing machine learning to automatecaching in distributed file systems,” in 2019 IEEE 35th internationalconference on data engineering workshops (ICDEW). 

IEEE, 2019, pp.133–139.

[28] R. Fabbro, C. Zhong, and S. Jiang, “Ml-lirs: Leveraging machine learn-ing to improve the lirs replacement algorithm,” in 2021 InternationalConference on High Performance Big Data and 

Intelligent Systems(HPBD&IS). IEEE, 2021, pp. 74–78.

[29] J. Yang, Z. Mao, Y. Yue, and K. Rashmi, “{GL-Cache}: Group-levellearning for efficient and high-performance caching,” in 21st USENIXConference on File and Storage Technologies (FAST 

23), 2023, pp. 115–134.

[30] A. Eisenman, A. Cidon, E. Pergament, O. Haimovich, R. Stutsman,M. Alizadeh, and S. Katti, “Flashield: a hybrid key-value cache thatcontrols flash write amplification,” in 16th USENIX 

Symposium onNetworked Systems Design and Implementation (NSDI 19), 2019, pp.65–78.

[31] C. Bernardini, T. Silverston, and O. Festor, “Mpc: Popularity-basedcaching strategy for content centric networks,” in 2013 IEEE interna-tional conference on communications (ICC). IEEE, 2013, 

pp. 3619–3623.

[32] J. Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu, and S. Wang,“Magic: A distributed max-gain in-network caching strategy ininformation-centric networks,” in 2014 IEEE conference on 

computercommunications workshops (INFOCOM WKSHPS). IEEE, 2014, pp.470–475.

[33] J. Iqbal, Z. u. Abideen, N. Ali, S. H. Khan, A. Rahim, A. Zahir, S. A. H.Mohsan, and M. H. Alsharif, “An energy efficient local popularitybased cooperative caching for mobile information centric 

networks,”Sustainability, vol. 14, no. 20, p. 13135, 2022.

[34] Y. Gu, Y. Li, H. Wang, L. Liu, K. Zhou, W. Fang, G. Hu, J. Liu,and Z. Cheng, “Lpca: learned mrc profiling based cache allocation forfile storage systems,” in Proceedings of the 59th ACM/IEEE 

DesignAutomation Conference, 2022, pp. 511–516.

[35] E. Ahvar, A.-C. Orgerie, and A. Lebre, “Estimating energy consumptionof cloud, fog, and edge computing infrastructures,” IEEE Transactionson Sustainable Computing, vol. 7, no. 2, pp. 277–

288, 2019.

[36] A. Chikhaoui, L. Lemarchand, K. Boukhalfa, and J. Boukhobza, “Multi-objective optimization of data placement in a storage-as-a-service fed-erated cloud,” ACM Transactions on Storage 

(TOS), vol. 17, no. 3, pp.1–32, 2021.

[37] L. Saino, I. Psaras, and G. Pavlou, “Icarus: a caching simulator forinformation centric networking (icn),” in SimuTools, vol. 7. ICST,2014, pp. 66–75.

[38] G ´EANT, “G ´Eant network,” 2024, accessed: 2025-05-02. [Online].Available: https://network.geant.org/

[39] Consortium GARR, “Garr: The italian research and education network,”2025, accessed: 2025-05-02. [Online]. Available: https://www.garr.it/en/

[40] A. Chikhaoui, L. Lemarchand, K. Boukhalfa, and J. Boukhobza,“Stornir, a multi-objective replica placement strategy for cloud feder-ations,” in Proceedings of the 36th Annual ACM 

Symposium on AppliedComputing, 2021, pp. 50–59.

https://network.geant.org/
https://www.garr.it/en/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

