
KVell: the Design and
Implementation of a Fast
Persistent Key-Value Store

Baptiste Lepers

Oana Balmau

Karan Gupta

Willy Zwaenepoel

2/35

Put(k, v)

Get(k)→ v

Scan(kX, kY) → [kX vX , … , kY vY]

Single Machine Persistent KVs

3/35

0

1000

2000

3000

2010 2013 2016 2018

Disks are much faster

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Sequential Reads Sequential Writes

2016 201820132010

4/35

0

1000

2000

3000

2010 2013 2016 2018

Random as fast as sequential

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Random 4k ≈ sequential reads

2016 201820132010

Random 4k ≈ sequential writes

5/35

This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives

6/35

Popular designs

Log Structured Merge Tree
(LSM)

B+ Tree

7/35

50% GET, 50% PUT

0

1000

2000

0 10 20 30 40 50 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidthMax I/O bandwidth

Average used
I/O bandwidth

8/35

is CPU-bound

0

20

40

60

80

100

0 30 60

Time (s)

%
C

P
U

 u
ti

liz
at

io
n

9/35

Popular design #1: LSM

10/35

Popular design #1: LSM

Data ordered by key
in RAM and on disk

11/35

Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk
➔ Large sequential IO

12/35

Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk,
merged in the ordered main

structure (compaction)

13/35

60% - merging + creating indexes of the disk structure

%
C

P
U

 u
ti

liz
at

io
n

is CPU-bound

14/35

0

60

120

0 30 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

1000

2000

0 30 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidth

’s performance fluctuates

15/35

0

60

120

0 30 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

1000

2000

0 30 60

Time (s)

U
se

d
 I/

O
 B

an
d

w
id

th

(M
B

/s
)

Max I/O bandwidth

’s performance fluctuates

1 flush = large backlog of work

16/35

0

60

120

0 20 40 60

Time (s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Popular design #2: B+ Trees

Large buffers
➔ fluctuations

60% - Contention on shared
data structures

➔ low average throughput

%
C

P
U

 u
ti

liz
at

io
n

17/35

Lessons learned

Ordering

Contention

Large buffers

➔ low average throughput

➔ fluctuations

18/35

How to design an efficient KV for
very fast drives?

19/35

Key ideas

Ordering

Contention

Large buffers

Data unsorted on disk
(but sorted in memory)

Shared-nothing

No buffering

20/35

0

1000

2000

3000

2010 2013 2016 2018

Key idea #1 – data unsorted on disk

0

1000

2000

3000

2010 2013 2016 2018

B
an

d
w

id
th

 (
M

B
/s

) Random 4k ≈ sequential reads Random 4k ≈ sequential writes

21/35

Key idea #1 – data unsorted on disk

Unsorted data on disk

Put(k, v)

k, v

22/35

Key idea #1 – data unsorted on disk

Prefix(k)

Prefix(K2)

In-memory B tree index

Prefix(K0)

Prefix(K3)

Prefix(K4) Prefix(K5)

➔ [file, idx]

k, v

file

idx

Unsorted data on disk

23/35

Sharding (static partitioning) - N independent workers

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

Key % 3 == 0 Key % 3 == 1 Key % 3 == 2

24/35

Workers have their own index and files

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

25/35

Key idea #3 – no buffering

Put(k, v)
Page

Cache
write delayed writeTraditionally

26/35

Key idea #3 – no buffering

Put(k, v)
Page

Cache
write delayed writeTraditionally

Page
Cache

write
KVell Put(k, v)

27/35

Implementation challenges

Syscall cost

Data structures

Latency vs. Bandwidth

Latency spikes

28/35

Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive (500K IOPS, 2GB/s)

Benchmark:
YCSB – 1KB items, 100M elements (100GB)

Competition:

PebblesDB

29/35

0

200

400

600

800

YCSB A YCSB B YCSB C YCSB D YCSB F

RocksDB PebblesDB TokuMX WiredTiger Kvell

YCSB E

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

5

10

15

20

Uniform

50/50
read/write

95/5
read/write

100%
read

95/5
scans/write

Evaluation – YCSB

95/5
read/write

50/50
read/ rmw

30/35

0

200

400

600

800

YCSB A YCSB B YCSB C YCSB D YCSB F

RocksDB PebblesDB TokuMX WiredTiger Kvell

YCSB E

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

0

5

10

15

20

Uniform

50/50
read/write

95/5
read/write

100%
read

95/5
scans/write

Evaluation – YCSB

KVell runs at disk BW
(75% of CPU time idle)

50/50
read/write

95/5
read/write

31/35

YCSBE
0

5

10

15

20

95/5
scans/write

Evaluation – YCSB – Scans

0

20

40

60

0 60 120 180 240

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Time (s)

RocksDB PebblesDB TokuMX WiredTiger Kvell

32/35

YCSBE
0

5

10

15

20

95/5
scans/write

Evaluation – YCSB – Scans

0

20

40

60

0 60 120 180 240

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Th
ro

u
gh

p
u

t
(K

O
p

s/
s)

Time (s)

RocksDB drops to 1.8K
scans/s even on a read

mostly workload

RocksDB PebblesDB TokuMX WiredTiger Kvell

33/35

Evaluation – YCSB – Latency

1

100

10000

99p Max latency / minute

RocksDB PebblesDB WiredTiger Kvell

La
te

n
cy

 (
m

s)

34/35

In the paper

• Limitations:
• Indexes have to fit in memory
• Suboptimal scans for small items

• AWS machine, 15GB/s, 5TB dataset

• Production workload

• Recovery time

…

35/35

Conclusions & take away messages

• Ordering data is expensive
• Buffering kills performance

• Optimizing for CPU utilization is key

https://github.com/BLepers/KVell
Code and scripts to reproduce results on AWS

To kvell: to feel happy and proud

https://github.com/BLepers/KVell

KVell: the Design and
Implementation of a Fast
Persistent Key-Value Store

Baptiste Lepers

Oana Balmau

Karan Gupta

Willy Zwaenepoel

To kvell: to feel happy and proud

37/35

38/35

Evaluation – A word on recovery time

KVell recovery time is bounded by disk speed

System Recovery time

RocksDB 18s

WiredTiger 24s

KVell 6.6s

Surprisingly, scanning the whole database (efficiently) is faster than recovering
from commit logs (inefficiently)

100GB database – 100M elements – i3.metal

39/35

Evaluation – Scans
Th

ro
u

gh
p

u
t

(K
O

p
s/

s)

KV-tuple size (Bytes)

RocksDB

KVell

RocksDB
while compacting

0

40

80

120

160

64 128 256 512 1024 2048

40/35

Location information = 19B per item
Typical item size on disk = 400B-1KB

100 millions items = 1.7GB in memory

Key idea #1 – data unsorted on disk

