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Put(k, v)

Get(k)→ v

Scan(kX, kY) → [kX vX , … , kY vY]

Single Machine Persistent KVs
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This Talk

Existing KVs not designed for fast drives

KVell: a new design for fast drives
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Popular designs

Log Structured Merge Tree
(LSM)

B+ Tree
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50% GET, 50% PUT
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is CPU-bound
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Popular design #1: LSM
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Popular design #1: LSM

Data ordered by key
in RAM and on disk



11/35

Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk
➔ Large sequential IO
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Popular design #1: LSM

Updates buffered in RAM.

RAM flushed to disk, 
merged in the ordered main

structure (compaction)
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60% - merging + creating indexes of the disk structure
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1 flush = large backlog of work
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Large buffers
➔ fluctuations

60% - Contention on shared 
data structures

➔ low average throughput
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Lessons learned

Ordering

Contention

Large buffers

➔ low average throughput

➔ fluctuations
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How to design an efficient KV for 
very fast drives?
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Key ideas

Ordering

Contention

Large buffers

Data unsorted on disk
(but sorted in memory)

Shared-nothing

No buffering
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Key idea #1 – data unsorted on disk

Unsorted data on disk

Put( k, v )

k, v
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Key idea #1 – data unsorted on disk

Prefix(k) 

Prefix(K2)

In-memory B tree index

Prefix(K0)

Prefix(K3)

Prefix(K4) Prefix(K5)

➔ [file, idx]

k, v

file

idx

Unsorted data on disk
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Sharding (static partitioning) - N independent workers

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3

Key % 3 == 0 Key % 3 == 1 Key % 3 == 2
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Workers have their own index and files

Key idea #2 – no sharing

Worker 1 Worker 2 Worker 3



25/35

Key idea #3 – no buffering

Put(k, v)
Page 

Cache
write delayed writeTraditionally
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Key idea #3 – no buffering

Put(k, v)
Page 

Cache
write delayed writeTraditionally

Page 
Cache

write
KVell Put(k, v)
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Implementation challenges

Syscall cost

Data structures

Latency vs. Bandwidth

Latency spikes
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Evaluation

Machines:
4 cores, 32GB RAM, Optane 905P drive (500K IOPS, 2GB/s)

Benchmark: 
YCSB – 1KB items, 100M elements (100GB)

Competition:

PebblesDB
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Evaluation – YCSB – Latency
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In the paper

• Limitations:
• Indexes have to fit in memory
• Suboptimal scans for small items

• AWS machine, 15GB/s, 5TB dataset

• Production workload

• Recovery time

…
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Conclusions & take away messages

• Ordering data is expensive
• Buffering kills performance

• Optimizing for CPU utilization is key

https://github.com/BLepers/KVell
Code and scripts to reproduce results on AWS

To kvell: to feel happy and proud

https://github.com/BLepers/KVell
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Evaluation – A word on recovery time

KVell recovery time is bounded by disk speed

System Recovery time

RocksDB 18s

WiredTiger 24s

KVell 6.6s

Surprisingly, scanning the whole database (efficiently) is faster than recovering 
from commit logs (inefficiently)

100GB database – 100M elements – i3.metal



39/35

Evaluation – Scans
Th

ro
u

gh
p

u
t

(K
O

p
s/

s)

KV-tuple size (Bytes)

RocksDB

KVell

RocksDB
while compacting

0

40

80

120

160

64 128 256 512 1024 2048



40/35

Location information = 19B per item
Typical item size on disk = 400B-1KB

100 millions items = 1.7GB in memory

Key idea #1 – data unsorted on disk


