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Context

e The scale and power usage of HPC clusters is growing.
The 10 most powerful clusters used 63 MW in 2014, 156 MW in 2024 [1].

e Energy has a cost, both economical and environmental, with HPC projected to
be responsible for up to 8% of the worldwide CO,, emissions in 2030 [2].

e \While storage consume less energy than compute, the gap of performance
between persistent storage and memory means storage can be a performance
bottleneck [3], lengthening the application duration and wasting energy.

e Multiple techniques to balance energy and performance, amongst which
Dynamic Voltage and Frequency Scaling (DVFS);

1: TOP500. Online; accessed 16. Jan. 2025. https://top500.org/lists/top500/
2: Li, Baolin, et al. "Toward sustainable hpc: Carbon footprint estimation and environmental implications of hpc systems.", SC’'23
3: Littgau, Jakob, et al. "Survey of storage systems for high-performance computing." Supercomputing Frontiers and Innovations 5.1 (2018)
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Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.
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Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.
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Background
DVFS in HPC

e Reducing the CPU frequency on compute tasks was shown to lead to an
increased total energy consumption and a worse performance [1].

e Reducing the CPU frequency on memory-bound tasks or some MPI tasks
was shown to lead to a reduced energy consumption, at the cost of a slightly
worse performance [1].

e However, to the best of our knowledge, the effect of DVFS on HPC I/Os was
not covered by the literature

1: Calore, Enrico, et al. “Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications.”, CCPE’17



Background
/O Modeling

e In order to precisely apply DVFS, an I/O model of the HPC applications is
necessary.
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Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

o  White-box
m Access and/or modification of an application source code. source
m Adding hints or prefetching primitives to the application code [N

o Black-box

. 1/Os parameters
m Intercepting I/Os. —

m Pattern matching, probabilistic models P——

o Grey-box [1]

m Intercepting I/Os call stacks.
Extracting knowledge about an application

I/O structure using 1/O call stacks. LioC / POSIX / .

1: Dorier, Matthieu, et al. “Omnisc’lO: A Grammar-Based Approach to Spatial and Temporal I/0O Patterns Prediction”, SC’'14



Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

o White-box — need source code
m Access and/or modification of an application source code. source
m Adding hints or prefetching primitives to the application code [

o Black-box — scaling issues

. 1/Os parameters
m Intercepting I/Os. —

m Pattern matching, probabilistic models P——

o Grey-box [1] — deterministic I/Os only

m Intercepting I/Os call stacks.
Extracting knowledge about an application

I/O structure using 1/O call stacks. LioC / POSIX / .

1: Dorier, Matthieu, et al. “Omnisc’lO: A Grammar-Based Approach to Spatial and Temporal I/0O Patterns Prediction”, SC’'14



Problem Statements

Hence the problem statements:

e \What is the effect of Dynamic Voltage and Frequency Scaling on HPC 1/Os?
e How to create a low-overhead I/O model for both deterministic and
non-deterministic I/Os without access to the application source code?



/O Modeling

Overview

e We created GrlOt, a grey-box approach based on a directed graph of call stacks.
o Bounded size, depending on the number of unique call stacks.
o Near O(1) prediction and update thanks to an hash map
o Can support non-deterministic 1/0s by adding metadata to nodes and edges
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/O Modeling

Overview

e We created GrlOt, a grey-box approach based on a directed graph of call stacks.
o Bounded size, depending on the number of unique call stacks.
o Near O(1) prediction and update thanks to an hash map
o Can support non-deterministic 1/0s by adding metadata to nodes and edges

o 1 node =1 or more I/O call stacks
“.. o 1outgoing edge = 1 possible "next” I/O call stack
5 27 o New: 1 graph per process, or 1 graph per file.



/O Modeling
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/O Modeling
Tracing I/Os

I. Tracing I/Os

and preprocessing
call stacks

Ill. Predicting I/Os
for prefetch

1/0 Tracer

Online /O
Prediction

S,
one one

POSIX and Lib-C 1I/O function call interception through LD _PRELOAD

o Indirect support of libraries such as HDF5 or MPI-IO

Obtain the (relative) call stack and I/O parameters of every I/O

Optional tracing of 1/O call stacks for debug, as existing tracers did not support them
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Tracing 1/Os

I/0 interception

Through LD_PRELOAD Call stack extraction
With a depth limit
gmplified C Program \
void do_something(){ Call stack 2-11: [address(line2 of do_something),
for(inti = 0; i<10; i++){ address(line2 of main)]
read();
}
’ Call stack 2-11: |[ad(t’iiress(l(i,r‘:leZ of gio_somemlng)
: 3 - A " n
int main({ el B
read(); _ - loading_address(binary))
do_something();
return 0; ) Hashing
& / Call Stacks Processing Representing the call
Finding binaries loading adresses and stack snapshot hash as

making all call stacks relative to them a capital letter



Ill. Predicting I/Os
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Modeling

e |/O after I/O, GrlOt creates an I/O call stack graph
e \When a new I/O call stack “A” is discovered, a graph node is created.
e When a new I/O call stack transition “A—B” is discovered, an edge is created.



I. Tracing I/0s Il. Modeling I/0s lll. Predicting I/Os
and preprocessing through their /O call stacks for prefetch
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I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process
o 1 graph per “open” call stack
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I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process (previous version of GrlOt)
o 1 graph per “open” call stack
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I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process (previous version of GrlOt)
o 1 graph per “open” call stack — enables per-file 1/0 prediction & model reuse
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e [f the node has a single outgoing edge:

e Predicting:
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/O Modeling
Methodology

5 applications:

NAMD: Molecular dynamics
LAMMPS: Molecular dynamics
Xcompact3d: Navier Stokes solver
LQCD: Quantic chromodynamics
Nemo: Ocean simulation



/O Modeling
Methodology

# unique call] % of
stacks repeating
transitions |call stacks

/0 # unique

Application Description Nodes|Processes| = - | oo

Molecular Dynamics, 7.
NAMD LM Atoms: STMV 210M 12 12 [81.5GB| 371 718 9.32%

Molecular Dynamics,
LAMMPS | o aee e aNR Crambin] 13 | 896 |13.1GB| 39 52 80.18%
Xcompact3d| Navier-Stokes solver 10 640 |[13.8GB 85 110 0.28%

LQCD Quantic chromodynamics | 16 | 3072 [73.0GB| 319 643 9791%
Nemo Ocean simulation 8 256 |22.8GB| 229 312 32.52%




/O Modeling
Methodology

Purpose: Evaluating the overhead and accuracy of both model granularities.

e We run all 5 applications with both model granularities

e We compare GrlOt the state-of-the-art, Omnisc’lO

e \We run all 5 applications again with only the 1/O call stack instrumentation,
with varying call stack depth, and compare POSIX backtrace with libunwind



/O Modeling

Experimental Evaluation

e 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.
e Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

o A GPFSfile system is used. Itis under GPFS v5.1.8.0, with 8 volumes of
50TB, for a total volume of 400TB.

e The Linux page cache and GPFS page pool are cleared between experiments



/O Modeling

Experimental Evaluation: GrlOt VS Omnisc’lO, Accuracy
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GrlOt per-process is similar to Omnisc’lO in performance. GrlOt per open call stack is either similar or worse, depending on the application.



/O Modeling
Experimental Evaluation: GrlOt VS Omnisc’lO, Weighted Accuracy
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When accuracy is weighted by volume, it's the opposite: GrlOt per open call stack has similar or better performance on all applications.



/O Modeling
Experimental Evaluation: GrlOt VS Omnisc’lO, Model Overhead
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/O Modeling

Experimental Evaluation, GrlOt VS Omnisc’lO, Model size

244KB

100 kB 1

10 kB

model size

1kB-5

100 Bytes -
lammps namd nemo xcompact Iqcd
=== Omnisc'lO
B GrlOt Per-Process MFU
@ GrlOt Per-Open-Hash MFU



/O Modeling

Experimental Evaluation: Call stack depth VS Call stack differentiation
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/O Modeling

Experimental Evaluation: POSIX backtrace VS libunwind
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e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)
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e |Itis not possible to reduce call stack depth to gain performance without losing
information



/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)

e GrlOt with its per open call stack granularity has a much lower overhead as well

e Both GrlOt granularity have a much lower model size

e |Itis not possible to reduce call stack depth to gain performance without losing
information

e libunwind seems to have a better performance than POSIX backtrace



DVFS

Overview

In order to characterize DVFS for HPC, we provide an experimental methodology :

e Selecting the evaluation metrics
e Selecting the synthetic workloads
e Executing the workloads with varying CPU frequencies



DVFS
Methodology

3 metrics for performance and energy:

e Application duration (s) 32 0.8 KO LLLLL <
e Average power (W, thatis J.s™) 5 \\\\\\
| 53 AR
e Energy consumption (J) Z t 24t
A (a) <3 (b) Task duration (s)

We use an out-of-band energy monitoring tool, that communicates with the
Baseboard Management Controllers. As such, energy instrumentation includes
every physical component on the instrumented compute nodes.



DVFS
Methodology

3 parallel configurable synthetic workloads, with one process per core:

e A CPU-bound compute task
e A Memory-bound compute task
e A sequential I/O benchmark



DVFS

Methodology

Duration
Name Category %iglle e CFOE 1/Os v:rycc)?llc)ig (28 Ghz, BArariEters
& & all C-states)
] Number of pseudo-random
CPU-Fakeapp ?Coglg_l;)ts:ﬁ) 2% 0% 98% 758 numbers to generate per
process = 20e9
§ Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115 peprogessss 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency | 97% 2% 1% (depending on I/(,) size, /O type (bUﬁ‘teed or
(MPI-IO) 1/O size) direct), I/O count = variable
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Methodology

Duration
Name Category %igle e Cfog 1/Os V\Zc)flfig (28 Ghz, BArariEters
& & all C-states)
% ( ) umber of pseudo-random
CPU-Fakeapp ?gglg_l;)t;fz;) 2% 0% 98% 758 numbers to generate per
process = 20e9
§ Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115's perprocess:= 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency | 97% 2% 1% (depending on I:iO size, /O type (buffer.edblor
(MPI-IO) X 1/O size) ) \1rect), I/O count = varia 9




DVFS
Methodology

Purpose: Analyzing the effect of setting the CPU frequency during P-states

e Using the userspace cpufreq governor to set a CPU frequency target

e All C-states are enabled
e Running all 3 synthetic workloads 5 times with all the supported CPU

frequencies



DVFS

Experimental Evaluation

e 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.
e Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

o A GPFSfile system is used. Itis under GPFS v5.1.8.0, with 8 volumes of
50TB, for a total volume of 400TB.

e The Linux page cache and GPFS page pool are cleared between experiments



DVFS

Experimental Evaluation: P-states for the CPU-bound workload
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e On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)
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Experimental Evaluation: P-states for the CPU-bound workload
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e On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)
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DVFS

Experimental Evaluation: P-states for the CPU-bound workload
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On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)
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Experimental Evaluation: P-states for the memory-bound workload
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On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)
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Experimental Evaluation: P-states for the memory-bound workload
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e On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)



Energy consumption (kJ)

DVFS

Experimental Evaluation: P-states for the memory-bound workload
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e On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)
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Experimental Evaluation: P-states for the buffered 1/O workload
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e On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)
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e On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)
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Experimental Evaluation: P-states for the buffered 1/O workload
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On buffered 1/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)
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Experimental Evaluation: P-states for the direct 1/O workload
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usage (up to -4%) and a lower performance (up to +9% task duration)
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On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power
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e On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power
usage (up to -4%) and a lower performance (up to +9% task duration)
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On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power
usage (up to -4%) and a lower performance (up to +9% task duration)
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e On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration
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Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.
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Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.

On |/O workloads, we constantly observe a lower power usage with lower
CPU frequencies, but also a variable performance loss.
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Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.

On |/O workloads, we constantly observe a lower power usage with lower
CPU frequencies, but also a variable performance loss.

Overall, while we were limited to a single CPU model and PFS in this study,
we have demonstrated that there are |/O energy optimization opportunities
with DVFS
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e GrlOt with one graph per file enables I/O modeling and prediction with a
similar or better prediction accuracy than state of the art. It also has less
overhead and a lower memory footprint.
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Conclusion and Future Works

e GrlOt with one graph per file enables I/O modeling and prediction with a
similar or better prediction accuracy than state of the art. It also has less
overhead and a lower memory footprint.

e \We have demonstrated that there were energy optimization opportunities
using DVFS.

e Future works:
o Extending our studies on DVFS to more software and hardware resources.
o Extending our study on DVFS to provide an I/O energy predictive model.
o Extending GrlOt to enable federating models made on multiple compute
nodes into a single application model.
o Using GrlOt to optimize 1/0 energy with DVFS.



