SV [DEN<«@scc ENST| @ s

Modeling and DVFS for the
Energy Optimisation of HPC |/Os

Louis-Marie Nicolas Salim Mimouni*
Philippe Couvée® Jalil Boukhobza

"Lab-STICC, CNRS UMR 6285, ENSTA | IP Paris, 29806 Brest, France
*Atos BDS R&D Data Management, 38100 Grenoble, France

Context

e The scale and power usage of HPC clusters is growing.
The 10 most powerful clusters used 63 MW in 2014, 156 MW in 2024 [1].

e Energy has a cost, both economical and environmental, with HPC projected to
be responsible for up to 8% of the worldwide CO,, emissions in 2030 [2].

e \While storage consume less energy than compute, the gap of performance
between persistent storage and memory means storage can be a performance
bottleneck [3], lengthening the application duration and wasting energy.

e Multiple techniques to balance energy and performance, amongst which
Dynamic Voltage and Frequency Scaling (DVFS);

1: TOP500. Online; accessed 16. Jan. 2025. https://top500.org/lists/top500/
2: Li, Baolin, et al. "Toward sustainable hpc: Carbon footprint estimation and environmental implications of hpc systems.", SC’'23
3: Littgau, Jakob, et al. "Survey of storage systems for high-performance computing." Supercomputing Frontiers and Innovations 5.1 (2018)

https://top500.org/lists/top500/

Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.

usage (W)
o
(o]
*
©

Average power

t 2+t
A2 (a) <3 (b) Task duration (s)

Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.

usage (W)
o
(o]
*
©

Average power

t 2:"t
A2 (a) <3 (b) Task duration (s)

Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.

usage (W)
o
(o]
*
©

Average power

tl 2*t
A2 (a) <3 (b) Task duration (s)

Background
DVFS for Energy Optimization

Reduced CPU frequency : lower power usage, lower performance.

When CPU performance has a low impact on the running task duration,
energy can be saved by lowering the CPU frequency.

When CPU performance has a high impact on the running task duration,
reducing the frequency can lead to an increased energy cost.

2%t

PP 7?7727 77

usage (W)
o
(o]
»*
©

Average power

2 (a) <3 (b) Task duration (s)

Background
DVFS in HPC

e Reducing the CPU frequency on compute tasks was shown to lead to an
increased total energy consumption and a worse performance [1].

e Reducing the CPU frequency on memory-bound tasks or some MPI tasks
was shown to lead to a reduced energy consumption, at the cost of a slightly
worse performance [1].

e However, to the best of our knowledge, the effect of DVFS on HPC I/Os was
not covered by the literature

1: Calore, Enrico, et al. “Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications.”, CCPE’17

Background
/O Modeling

e In order to precisely apply DVFS, an I/O model of the HPC applications is
necessary.

Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

o White-box
m Access and/or modification of an application source code. source
m Adding hints or prefetching primitives to the application code [

Background
/O Modeling

3 main approaches to I/O modeling and prediction in the litterature:

©)

©)

White-box

m Access and/or modification of an application source code.

m Adding hints or prefetching primitives to the application code

Black-box
m Intercepting I/Os.
m Pattern matching, probabilistic models

Application

1/Os parameters

Source
code

Tracer

LibC / POSIX/ ...

Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

o White-box
m Access and/or modification of an application source code. source
m Adding hints or prefetching primitives to the application code [N

o Black-box

. 1/Os parameters
m Intercepting I/Os. —

m Pattern matching, probabilistic models P——

o Grey-box [1]

m Intercepting I/Os call stacks.
Extracting knowledge about an application

I/O structure using 1/O call stacks. LioC / POSIX / .

1: Dorier, Matthieu, et al. “Omnisc’lO: A Grammar-Based Approach to Spatial and Temporal I/0O Patterns Prediction”, SC’'14

Background
/O Modeling

e 3 main approaches to I/O modeling and prediction in the litterature:

o White-box — need source code
m Access and/or modification of an application source code. source
m Adding hints or prefetching primitives to the application code [

o Black-box — scaling issues

. 1/Os parameters
m Intercepting I/Os. —

m Pattern matching, probabilistic models P——

o Grey-box [1] — deterministic I/Os only

m Intercepting I/Os call stacks.
Extracting knowledge about an application

I/O structure using 1/O call stacks. LioC / POSIX / .

1: Dorier, Matthieu, et al. “Omnisc’lO: A Grammar-Based Approach to Spatial and Temporal I/0O Patterns Prediction”, SC’'14

Problem Statements

Hence the problem statements:

e \What is the effect of Dynamic Voltage and Frequency Scaling on HPC 1/Os?
e How to create a low-overhead I/O model for both deterministic and
non-deterministic I/Os without access to the application source code?

/O Modeling

Overview

e We created GrlOt, a grey-box approach based on a directed graph of call stacks.
o Bounded size, depending on the number of unique call stacks.
o Near O(1) prediction and update thanks to an hash map
o Can support non-deterministic 1/0s by adding metadata to nodes and edges

/O Modeling

Overview

e We created GrlOt, a grey-box approach based on a directed graph of call stacks.
o Bounded size, depending on the number of unique call stacks.
o Near O(1) prediction and update thanks to an hash map
o Can support non-deterministic 1/0s by adding metadata to nodes and edges

o 1 node =1 or more I/O call stacks
o 1 outgoing edge = 1 possible “next” I/O call stack

/O Modeling

Overview

e We created GrlOt, a grey-box approach based on a directed graph of call stacks.
o Bounded size, depending on the number of unique call stacks.
o Near O(1) prediction and update thanks to an hash map
o Can support non-deterministic 1/0s by adding metadata to nodes and edges

o 1 node =1 or more I/O call stacks
“.. o 1outgoing edge = 1 possible "next” I/O call stack
5 27 o New: 1 graph per process, or 1 graph per file.

/O Modeling

Overview

Compute Node #1

Compute Node #2

Process #1

I. Tracing I/Os

and preprocessing

call stacks

1/0 Tracer

Process #2

Process #3

Y

1/0s,arriving
one by one

io params
call stacks

Il. Modeling I/0s

tihrough their I/O call stacks

Online /O Call
Stacks
Modeling

for prefetch

Online /O

i

Prediction

lll. Predicting I/Os

1/0 Prediction

Next node prediction
= 1/0 call stacks pred
= |/O parameters pre

iction
diction

/O Modeling
Tracing I/Os

I. Tracing I/Os

and preprocessing
call stacks

Ill. Predicting I/Os
for prefetch

1/0 Tracer

Online /O
Prediction

S,
one one

POSIX and Lib-C 1I/O function call interception through LD _PRELOAD

o Indirect support of libraries such as HDF5 or MPI-IO

Obtain the (relative) call stack and I/O parameters of every I/O

Optional tracing of 1/O call stacks for debug, as existing tracers did not support them

I. Tracing I/Os I. Modeling 1/Os 1ll. Predicting 1/0s
and preprocessing thipugh their O call stacks for prefetch
call stacks, ; : .

- Online /O Call .
1/0 Tracer 1/0s arriving Stacks g SS 0n|||.1e]IO
. one by one BAtali Prediction
9 Model

o
call stacks|

Tracing 1/Os

I/0 interception

Through LD_PRELOAD Call stack extraction
With a depth limit
gmplified C Program \
void do_something(){ Call stack 2-11: [address(line2 of do_something),
for(inti = 0; i<10; i++){ address(line2 of main)]
read();
}
’ Call stack 2-11: |[ad(t’iiress(l(i,r‘:leZ of gio_somemlng)
: 3 - A " n
int main({ el B
read(); _ - loading_address(binary))
do_something();
return 0;) Hashing
& / Call Stacks Processing Representing the call
Finding binaries loading adresses and stack snapshot hash as

making all call stacks relative to them a capital letter

Ill. Predicting I/Os

for prefetch

I. Tracing I/Os II. Modeling I/Os
and preprocessing through their VO call stacks

call stacks ®
s Online I/O Call -
1/0 Tracer 1/0s,arriving Stacks Online /O
I / I . one by dne M s Prediction
g .in arams.
sf S

Modeling

e |/O after I/O, GrlOt creates an I/O call stack graph
e \When a new I/O call stack “A” is discovered, a graph node is created.
e When a new I/O call stack transition “A—B” is discovered, an edge is created.

I. Tracing I/0s Il. Modeling I/0s lll. Predicting I/Os
and preprocessing through their /O call stacks for prefetch

call stacks

1Os.arrivdn Online /0 Call
110 Tracer - 9 Stacks
/0 Modelin o e
I g fimestal m|
io params.
| stacks

Modeling

Online /O
Prediction

I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process
o 1 graph per “open” call stack

I. Tracing I/0s Il. Modeling I/0s lll. Predicting I/Os
and preprocessing through their /O call stacks for prefetch

call stacks

1Os.arrivdn Online /0 Call
110 Tracer - 9 Stacks
/0 Modelin o e
I g fimestal m|
io params.
| stacks

Modeling

Online /O
Prediction

I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process (previous version of GrlOt)
o 1 graph per “open” call stack

/0 Modeling =
Modeling -

I. Tracing I/0s Il. Modeling I/Os lll. Predicting I/Os
and preprocessing through their /O call stacks for prefetch

call stacks

1/0 Tracer UOs, arrigng i—-»
one by gne

Online /O
Prediction

I/O after 1/0O, GrlOt creates an I/O call stack graph
When a new /O call stack “A” is discovered, a graph node is created.
When a new |/O call stack transition “A—B” is discovered, an edge is created.
2 modeling granularities:
o 1 graph per process (previous version of GrlOt)
o 1 graph per “open” call stack — enables per-file 1/0 prediction & model reuse

I. Tracing I/0s Il. Modeling I/Os
and preprocessing through their 1/O call stack
call stacks H

IIl. Predicting I/Os

for prefetch

Online /O

1/O Tracer
Prediction

/0 Modeling (=
Predicting

e [f the node corresponding to the previous I/O call stack has no outgoing edge:

) Predicting:

@_,‘ (o

I. Tracing I/0s Il. Modeling I/Os Ill. Predicting 1/0Os

and preprocessing through their 1/O call stack for prefetch
call stacks : i
Online /O
1/O Tracer
Prediction

/0 Modeling (=
Predicting

e [f the node corresponding to the previous I/O call stack has no outgoing edge:

Predicting:

© :
@_,‘ ©

e [f the node has a single outgoing edge:

e Predicting:
A8 ®

I. Tracing I/0s Il. Modeling I/0s IIl. Predicting I/Os

and preprocessing through their 1/O call stack for prefetch
call stacks : i
Online /O
1/O Tracer
Prediction

/0 Modeling (=
Predicting

e [f the node corresponding to the previous I/O call stack has no outgoing edge:

Predicting:

©
U @

e [f the node has a single outgoing edge:

e Predicting:
Ae—B ®

e [f the node has more than a single edge:

@ Predicting:

d—0 & ©-0

/O Modeling
Methodology

5 applications:

NAMD: Molecular dynamics
LAMMPS: Molecular dynamics
Xcompact3d: Navier Stokes solver
LQCD: Quantic chromodynamics
Nemo: Ocean simulation

/O Modeling
Methodology

unique call] % of
stacks repeating
transitions |call stacks

/0 # unique

Application Description Nodes|Processes| = - | oo

Molecular Dynamics, 7.
NAMD LM Atoms: STMV 210M 12 12 [81.5GB| 371 718 9.32%

Molecular Dynamics,
LAMMPS | o aee e aNR Crambin] 13 | 896 |13.1GB| 39 52 80.18%
Xcompact3d| Navier-Stokes solver 10 640 |[13.8GB 85 110 0.28%

LQCD Quantic chromodynamics | 16 | 3072 [73.0GB| 319 643 9791%
Nemo Ocean simulation 8 256 |22.8GB| 229 312 32.52%

/O Modeling
Methodology

Purpose: Evaluating the overhead and accuracy of both model granularities.

e We run all 5 applications with both model granularities

e We compare GrlOt the state-of-the-art, Omnisc’lO

e \We run all 5 applications again with only the 1/O call stack instrumentation,
with varying call stack depth, and compare POSIX backtrace with libunwind

/O Modeling

Experimental Evaluation

e 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.
e Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

o A GPFSfile system is used. Itis under GPFS v5.1.8.0, with 8 volumes of
50TB, for a total volume of 400TB.

e The Linux page cache and GPFS page pool are cleared between experiments

/O Modeling

Experimental Evaluation: GrlOt VS Omnisc’lO, Accuracy

100% . 99% 99% 99%

80% A

60% A

40% A

prediction accuracy

20% -

0% -

lammps namd nemo xcompact Iqcd

B Omnisc'lO
B GrlOt Per-Process MFU
B GriOt Per-Open-Hash MFU

GrlOt per-process is similar to Omnisc’lO in performance. GrlOt per open call stack is either similar or worse, depending on the application.

/O Modeling
Experimental Evaluation: GrlOt VS Omnisc’lO, Weighted Accuracy

100%200%200%

98% 98% 979% 97% 98%

100% -

80% A

by volume
(@)}
<
>
1

40% A

20% -

prediction accuracy weighted

0% -

lammps namd nemo xcompact Iqcd

= Omnisc'lO
B GrlOt Per-Process MFU
B GrlOt Per-Open-Hash MFU

When accuracy is weighted by volume, it's the opposite: GrlOt per open call stack has similar or better performance on all applications.

/O Modeling
Experimental Evaluation: GrlOt VS Omnisc’lO, Model Overhead

1 00 |JS ‘: 82s

10 pus A

model overhead per I/O

1000 ns -

lammps namd nemo xcompact Igcd

= Omnisc'lO
2 GrlOt Per-Process MFU
B GrlOt Per-Open-Hash MFU

/O Modeling

Experimental Evaluation, GrlOt VS Omnisc’lO, Model size

244KB

100 kB 1

10 kB

model size

1kB-5

100 Bytes -
lammps namd nemo xcompact Iqcd
=== Omnisc'lO
B GrlOt Per-Process MFU
@ GrlOt Per-Open-Hash MFU

/O Modeling

Experimental Evaluation: Call stack depth VS Call stack differentiation

_ o = K= =Y = = = X

9 /)e —¢ -4

&5 300 X/ ,‘,,4—

= ‘ R

g 2001 [A >V

o / '/'/

o 1001+ 4£#

o / 4/ o = = = e =W = e = ke

= d ‘O -0 -0 -0 -0
0- -

4 8 12 16 20 24 28 32
call stack depth

~® - lammps - incompact3d
=>: namd - Iqcd
-¥: nemo

/O Modeling

Experimental Evaluation: POSIX backtrace VS libunwind

instrumentation overhead

(libunwind)

/V
10000 - 2
7500 - ""}"’i-ﬁ
5000 ol A
/. ;.«ﬁ--x— Ko = 3 = =X
2500 { g% L ”
4 8 121620242832
call stack depth
-& lammps —#- incompact3d
=> namd - Iqcd
=¥ nemo

instrumentation overhead

(backtrace)

R e L
P /
/ PO _:# <
- 2
,;!’

M..—x— X = H = = = =X
”

AN

4

&
- namd
._.‘..

8 12 16 20 24 28 32
call stack depth

d*..

_‘..

lammps incompact3d
Igcd

nemo

/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)

/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)
e GrlOt with its per open call stack granularity has a much lower overhead as well

/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)

e GrlOt with its per open call stack granularity has a much lower overhead as well
Both GrlOt granularity have a much lower model size

/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)

e GrlOt with its per open call stack granularity has a much lower overhead as well

e Both GrlOt granularity have a much lower model size

e |Itis not possible to reduce call stack depth to gain performance without losing
information

/O Modeling

Key Takeaways

e While GrlOt have a similar accuracy to Omnisc’lO, it has a better weighted
accuracy (up to +90% on NAMD)

e GrlOt with its per open call stack granularity has a much lower overhead as well

e Both GrlOt granularity have a much lower model size

e |Itis not possible to reduce call stack depth to gain performance without losing
information

e libunwind seems to have a better performance than POSIX backtrace

DVFS

Overview

In order to characterize DVFS for HPC, we provide an experimental methodology :

e Selecting the evaluation metrics
e Selecting the synthetic workloads
e Executing the workloads with varying CPU frequencies

DVFS
Methodology

3 metrics for performance and energy:

e Application duration (s) 32 0.8 KO LLLLL <
e Average power (W, thatis J.s™) 5 \\\\\\
| 53 AR
e Energy consumption (J) Z t 24t
A (a) <3 (b) Task duration (s)

We use an out-of-band energy monitoring tool, that communicates with the
Baseboard Management Controllers. As such, energy instrumentation includes
every physical component on the instrumented compute nodes.

DVFS
Methodology

3 parallel configurable synthetic workloads, with one process per core:

e A CPU-bound compute task
e A Memory-bound compute task
e A sequential I/O benchmark

DVFS

Methodology

Duration
Name Category %iglle e CFOE 1/Os v:rycc)?llc)ig (28 Ghz, BArariEters
& & all C-states)
] Number of pseudo-random
CPU-Fakeapp ?Coglg_l;)ts:ﬁ) 2% 0% 98% 758 numbers to generate per
process = 20e9
§ Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115 peprogessss 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency | 97% 2% 1% (depending on I/(,) size, /O type (bUﬁ‘teed or
(MPI-IO) 1/O size) direct), I/O count = variable

DVFS

Methodology

Duration
Name Category %iglle e Cfpo[j 1/Os v:ryco)?llc)ig (28 Ghz, BArariEters
& & all C-states)
] Number of pseudo-random
CPU-Fakeapp ?Coglg_lll)ts:s;) 2% 0% 98% 758 numbers to generate per
process = 20e9
Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115 peprogessss 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency | 97% 2% 1% (depending on I/(,) size, /O type (buffexted or
(MPI-IO) 1/O size) direct), I/O count = variable

DVFS

Methodology

Duration
Name Category %iglle e Cfpo[j 1/Os v:ryco)?llc)ig (28 Ghz, BArariEters
& & all C-states)
] Number of pseudo-random
CPU-Fakeapp ?Coglg_lll)ts:s;) 2% 0% 98% 758 numbers to generate per
process = 20e9
Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115 peprogessss 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency] | 97% 2% 1% (depending on I/(,) size, /O type (buffexted or
(MPI-IO) 1/O size) direct), I/O count = variable

DVFS

Methodology

Duration
Name Category %igle e Cfog 1/Os V\Zc)flfig (28 Ghz, BArariEters
& & all C-states)
% () umber of pseudo-random
CPU-Fakeapp ?gglg_l;)t;fz;) 2% 0% 98% 758 numbers to generate per
process = 20e9
§ Compute task Volume of memory to access
Memory-Fakeapp (Miashiaa) 2% 0% 98% 115's perprocess:= 400 GB
File I/O 100-500 s .
I/O-Fakeapp Data dependency | 97% 2% 1% (depending on I:iO size, /O type (buffer.edblor
(MPI-IO) X 1/O size)) \1rect), I/O count = varia 9

DVFS
Methodology

Purpose: Analyzing the effect of setting the CPU frequency during P-states

e Using the userspace cpufreq governor to set a CPU frequency target

e All C-states are enabled
e Running all 3 synthetic workloads 5 times with all the supported CPU

frequencies

DVFS

Experimental Evaluation

e 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.
e Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

o A GPFSfile system is used. Itis under GPFS v5.1.8.0, with 8 volumes of
50TB, for a total volume of 400TB.

e The Linux page cache and GPFS page pool are cleared between experiments

DVFS

Experimental Evaluation: P-states for the CPU-bound workload

= userspace 1.SGhz—+ g 26018 CPU frequency 2.8Ghz

5 160 %250

=3 g

£ 140 « 240

7 34 g

= 2.0Gh

S userspace 7 S 530.

> 120+ v

(@)

S g 220 CPU frequenc_)‘_Z.OGhz

c

w 100+ -I—’—userspa':ce 2.8Ghz ’ ‘ z ' _CPU frequency 1.5('3hz——’|-
400 500 600 700 800 400 500 600 700 800

CPU-bound task duration (s) CPU-bound task duration (s)

e On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)

DVFS

Experimental Evaluation: P-states for the CPU-bound workload

= userspace 1.SGhz’+ g 26018 CPU frequency 2.8Ghz

.g 160 %250

a g

£ 140- 5 240

7 34 g

- 2.0Gh

S userspace z S 530.

> 120+ v

(@)]

S g 220 CPU frequenc_‘\'(_z.OGhz

o 100 -I——userspace 2.8Ghz 3: CPU frequiency 1 I%(T.h7———!-
400 500 600 700 800 400 500 600 700 800

CPU-bound task duration (s) CPU-bound task duration (s)

e On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)

Energy consumption (kJ)

DVFS

Experimental Evaluation: P-states for the CPU-bound workload

' \ userspace 1.SGhz’+ g 26018 CPU frequency 2.8Ghz
160+ > 250
©
0
-
140 1 + 5 2401
=
userspace 2.0Ghz S 530
120+ o
© CPU frequency 2.0Ghz
© 220 X
00 jH——userspace 2.8Ghz |]z | _CPU frequency 1.5Ghz———
400 500 600 700 800 400 500 600 700 800
CPU-bound task duration (s) CPU-bound task duration (s)

On CPU-bound tasks, reducing the CPU frequency leads to both a lower
performance AND to an increased total energy consumption (up to +70%)

—

—_—

N
C

Energy consumptio

DVFS

Experimental Evaluation: P-states for the memory-bound workload

165.0; +\userspace 2.8Ghz
162.57
160.0 -
157.5
155.01
152.5 -
gserspace—z'ﬁehz ' userspac'eflﬁGﬁi'
565 570 575 580

Memory-bound task duration (s)

Average power usage (W)

N
O
o

N
0
o

N
~
o

260+

+
1 CPU frequency 2.8Ghz
CPU frequency 2.0Ghz
—'—
‘ __CPU frequency 1.5Ghz———
565 570 575 580

Memory-bound task duration (s)

On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)

DVFS

Experimental Evaluation: P-states for the memory-bound workload

= 165.0{ +— S +
x userspace 2.8Ghz 2 290- CPU frequency 2.8Ghz
[
.S 162.5 o
< v
£ 160.0- > 2801
Z o
€ 157.51 2
ot Q
= 155.0 q 2r0
o : = CPU frequ_?_ncy 2.0Ghz
QU | -
c 152.51 [}
w gserspace-?ﬂa@hz ' userspac'efl.*SGﬁJz" 3: 260,— ' CcPU frquenry] SGhy—-L-
565 570 575 580 565 570 575 580)
Memory-bound task duration (s) Memory-bound task duration (s)

e On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)

Energy consumption (kJ)

DVFS

Experimental Evaluation: P-states for the memory-bound workload

65.0 T— S
m userspace 2.8Ghz 2 290- T CPU frequency 2.8Ghz
162.5} &
3
160.0} = 280-
9]
157.5} 3
o 270
0]
155.0y =4 CPU frequency 2.0Ghz
o T
152.5/1 g
gserspace-?ﬁehz ' userspac'efIﬁSGﬁJz" < 260 __ __CPU freqqency 1.SGhz—-—|-
565 570 575 580 565 570 575 580
Memory-bound task duration (s) Memory-bound task duration (s)

e On memory-bound tasks, reducing the CPU frequency leads to a slightly lower
performance (-4%) and to a reduced total energy consumption (-9%)

DVFS

Experimental Evaluation: P-states for the buffered 1/O workload

-
=
%)}
N
\\

=
=
o
\\

Task duration relative to
max frequency
pni p—i
o o
] w
@

0.951 @

40 KiB 400 KiB
I/O size (sequential, stdio)
-¥- CPU freq. 2.8Ghz
-4~ CPU freq. 2.0Ghz

4 MiB

-@- CPU freq. 1.5Ghz

— ‘\
22501
=
2 245
= 240- A I L 4
2 2351 .\ b4
2 -2
> 230 T
0 225 o B, N——- ®
: Y
4 KiB 40 KiB 400 KiB 4 MiB

I/O size (sequential, stdio)
-¥- CPU freq. 2.8Ghz
-4- CPU freq. 2.0Ghz

-@- CPU freq. 1.5Ghz

e On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)

DVFS

Experimental Evaluation: P-states for the buffered 1/O workload

S 1.15]
7’ \

g ,’, A \
— >\ s / \ b
4+ (@] /’ b \\ \\
8 £ 1,10 - \
QJ Q) Vd \
-3 P WX
c T p
ow N
5 & 1.05 ,’ \Y
S5 ‘
T £ 0 i b
2 € 1.00] X#v ------------ p 4
0 e
© s
= ’

0.951@ , , |

4 KiB 40 KiB 400 KiB 4 MiB

I/O size (sequential, stdio)

-¥- CPU freq. 2.8Ghz
-4~ CPU freq. 2.0Ghz

-@- CPU freq. 1.5Ghz

=, \ 4
= 2504 | .
IS
2 245
- 2401 A I
2 235{ @ L
o \\\ 5 =k
> 230 l
E \\\ N ’,"”,////
0 225 o S, N—— @
g Y !
4 KiB 40 KiB 400 KiB 4 MiB

I/O size (sequential, stdio)

-¥- CPU freq. 2.8Ghz
-4- CPU freq. 2.0Ghz

-@- CPU freq. 1.5Ghz

e On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)

DVFS

Experimental Evaluation: P-states for the buffered 1/O workload

4 @ N

2 '1.15]

.g > /', A \\

2O 7 P “\ \\

D £1.10 \

. g_ ,/' \\\

c 9 % 1

2 £ 1.05 .

E > 1’ ’ \\

= © P ’ \\\

© 4 - N

x e 1.001 X;;:;;:--~*---1“-------------V ““““““ *x

m 4

= ¢

0.05{ @ 1 , .
4 KiB 40 KiB 400 KiB 4 MiB

_ I/O size (sequential, stdio))

“W.- CPU freq. 2.8Ghz

-@- CPU freq. 1.5Ghz

-4~ CPU freq. 2.0Ghz

N
%
o

NN

Average power usage (W)
N
i

-¥- CPU freq. 2.8Ghz

245
2401
2351

W
o

4 KiB

40 KiB 400 KiB 4 MiB
I/O size (sequential, stdio)
-@- CPU freq. 1.5Ghz

-4- CPU freq. 2.0Ghz

On buffered 1/O tasks, reducing the CPU frequency leads to a reduced power usage
(up to -7%) at a variable performance cost (from none up to +17% task duration)

DVFS

Experimental Evaluation: P-states for the direct 1/O workload

1.10
. /,’
¢ 1.08{@-—-
.E a —.\‘\ ,/’,
o5 AT
v G 1.06 R e
5§ e,
5E1.04] A
o X Vg RNSL
S5 © ’ I §
©
SEqg A
)]
o
1,00 { Weeoseonenee , e v
4 KiB 40 KiB 400 KiB 4 MiB

I/O size (sequential, O_DIRECT)
-¥- CPU freq. 2.8Ghz
-4~ CPU freq. 2.0Ghz

-@- CPU freq. 1.5Ghz

2301

N
N
(9]

N
=l
(9

Average power usage (W)
=
o

N
o
9]

-¥- CPU freq. 2.8Ghz

N
N
o

-4- CPU freq. 2.0Ghz

usage (up to -4%) and a lower performance (up to +9% task duration)

e |\
i \
o \
B \
N\
" e \
v k
\
\
\
\
\
- \
-7 N
> N
2% ™ \
>l NS \ -
’54’ \\\\ \\ -
e N /” s
o’ \ ~ \ S ’
\\ ~ ‘,,:/’
4 KiB 40 KiB 400 KiB 4 MiB
I/O size (sequential, O_DIRECT)

CPU freq. 1.5Ghz

On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power

DVFS

Experimental Evaluation: P-states for the direct 1/O workload

1.10 230
o /’ E /_,/ v\\
-t P e = N
(D] i SELN ’/, _ ”” \\\
By o 322y l .
E g A \\\\\\\ ,/'/ 8 ‘ \\\
~eo 7 S b \\
0 0 1.06 e @ 2 220 e ™ X
c O e S () ¢¢$’ Ve \ Sl
oy \\A g il
B Lo 8215 @ e
3 g A Al & L
3 € 1.021 © 210 ®
© o ¥
= z
L0 P s e ecea— ¥ 05| | A |
4 KiB 40 KiB 400 KiB 4 MiB 4 KiB 40 KiB 400 KiB 4 MiB
I/O size (sequential, O_DIRECT) I/O size (sequential, O_DIRECT)
-¥- CPU freq. 2.8Ghz -@- CPU freq. 1.5Ghz -¥- CPUfreq. 2.8Ghz -@- CPU freq. 1.5Ghz
-4~ CPU freq. 2.0Ghz -4- CPU freq. 2.0Ghz

e On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power
usage (up to -4%) and a lower performance (up to +9% task duration)

DVFS

Experimental Evaluation: P-states for the direct 1/O workload

1.10 230 A 4
s 4| £ N
v 108 @ - 225{w—""
L — °. 5225y
E g A \\~\\ ,r' {g ‘ %
0 0 1.06; AT = 330 s Y
gu’:: 1oaf| A S 215{ @~ V @
15: £ A'/ A) N L
= g © 210 @

100, Pt st O g e VI " 205i, , & .

4 KiB 40 KiB 400 KiB 4 MiB 4 KiB 40 KiB 400 KiB 4 MiB

I/O size (sequential, O_DIRECT)
-¥- CPUfreq. 2.8Ghz -@- CPU freq. 1.5Ghz
-4- CPU freq. 2.0Ghz

I/O size (sequential, O_DIRECT)
-¥- CPU freq. 2.8Ghz -@- CPU freq. 1.5Ghz
-4~ CPU freq. 2.0Ghz

On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power
usage (up to -4%) and a lower performance (up to +9% task duration)

DVFS

Key Takeaways

e On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration

500

=

© 400

§ 300

§ 200 4\\\\\\\\\7

: 00

0 100 200 300 400 500 600 700 800
CPU-bound task duration (s)

CPU freq.: 1.5Ghz CPU freq.: 2.8Ghz
LZ] Total energy: 172 kJ (5 Total energy: 100 kJ

DVFS

Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.

2
o 3001
<v
2 ANNERIANNANNRINNTINNNNNY
3
& 200
2 ¥
2 %
v /
g 100+
()]
z /1
o+ ? * Y Y "
0 100 200 300 400 500
Memory-bound task duration (s)
CPU freq.: 1.5Ghz CPU freq.: 2.8Ghz

L2 Total energy: 152 kJ 5 Total energy: 165 kJ

DVFS

Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.

On |/O workloads, we constantly observe a lower power usage with lower
CPU frequencies, but also a variable performance loss.

DVFS

Key Takeaways

On a CPU-bound workload, the reduced power usage is not enough to
compensate for the increased duration.

On a Memory-bound workload, the reduced power usage is able to
compensate for the increased duration, enabling energy optimization.

On |/O workloads, we constantly observe a lower power usage with lower
CPU frequencies, but also a variable performance loss.

Overall, while we were limited to a single CPU model and PFS in this study,
we have demonstrated that there are |/O energy optimization opportunities
with DVFS

Conclusion and Future Works

e GrlOt with one graph per file enables I/O modeling and prediction with a
similar or better prediction accuracy than state of the art. It also has less
overhead and a lower memory footprint.

Conclusion and Future Works

e GrlOt with one graph per file enables I/O modeling and prediction with a
similar or better prediction accuracy than state of the art. It also has less
overhead and a lower memory footprint.

e \We have demonstrated that there were energy optimization opportunities
using DVFS.

Conclusion and Future Works

e GrlOt with one graph per file enables I/O modeling and prediction with a
similar or better prediction accuracy than state of the art. It also has less
overhead and a lower memory footprint.

e \We have demonstrated that there were energy optimization opportunities
using DVFS.

e Future works:
o Extending our studies on DVFS to more software and hardware resources.
o Extending our study on DVFS to provide an I/O energy predictive model.
o Extending GrlOt to enable federating models made on multiple compute
nodes into a single application model.
o Using GrlOt to optimize 1/0 energy with DVFS.

