
Modeling and DVFS for the 
Energy Optimisation of HPC I/Os

Louis-Marie Nicolas*

Philippe Couvée+
Salim Mimouni+
Jalil Boukhobza*

*Lab-STICC, CNRS UMR 6285, ENSTA | IP Paris, 29806 Brest, France
+Atos BDS R&D Data Management, 38100 Grenoble, France



Context

● The scale and power usage of HPC clusters is growing.
The 10 most powerful clusters used 63 MW in 2014, 156 MW in 2024 [1].

● Energy has a cost, both economical and environmental, with HPC projected to 
be responsible for up to 8% of the worldwide CO2 emissions in 2030 [2].

● While storage consume less energy than compute, the gap of performance 
between persistent storage and memory means storage can be a performance 
bottleneck [3], lengthening the application duration and wasting energy.

● Multiple techniques to balance energy and performance, amongst which 
Dynamic Voltage and Frequency Scaling (DVFS);

1: TOP500. Online; accessed 16. Jan. 2025. https://top500.org/lists/top500/
2: Li, Baolin, et al. "Toward sustainable hpc: Carbon footprint estimation and environmental implications of hpc systems.", SC’23
3: Lüttgau, Jakob, et al. "Survey of storage systems for high-performance computing." Supercomputing Frontiers and Innovations 5.1 (2018)

https://top500.org/lists/top500/


Background
DVFS for Energy Optimization

● Reduced CPU frequency : lower power usage, lower performance.

● When CPU performance has a low impact on the running task duration, 
energy can be saved by lowering the CPU frequency. 

● When CPU performance has a high impact on the running task duration, 
reducing the frequency can lead to an increased energy cost.



Background
DVFS for Energy Optimization

● Reduced CPU frequency : lower power usage, lower performance.

● When CPU performance has a low impact on the running task duration, 
energy can be saved by lowering the CPU frequency. 

● When CPU performance has a high impact on the running task duration, 
reducing the frequency can lead to an increased energy cost.



Background
DVFS for Energy Optimization

● Reduced CPU frequency : lower power usage, lower performance.

● When CPU performance has a low impact on the running task duration, 
energy can be saved by lowering the CPU frequency. 

● When CPU performance has a high impact on the running task duration, 
reducing the frequency can lead to an increased energy cost.



Background
DVFS for Energy Optimization

● Reduced CPU frequency : lower power usage, lower performance.

● When CPU performance has a low impact on the running task duration, 
energy can be saved by lowering the CPU frequency. 

● When CPU performance has a high impact on the running task duration, 
reducing the frequency can lead to an increased energy cost.



Background
DVFS in HPC

● Reducing the CPU frequency on compute tasks was shown to lead to an 
increased total energy consumption and a worse performance [1].

● Reducing the CPU frequency on memory-bound  tasks or some MPI tasks 
was shown to lead to a reduced energy consumption, at the cost of a slightly 
worse performance [1].

● However, to the best of our knowledge, the effect of DVFS on HPC I/Os was 
not covered by the literature

1: Calore, Enrico, et al. “Evaluation of DVFS techniques on modern HPC processors and accelerators for energy-aware applications.”, CCPE’17



Background
I/O Modeling

● In order to precisely apply DVFS, an I/O model of the HPC applications is 
necessary.



● 3 main approaches to I/O modeling and prediction in the litterature:

Background
I/O Modeling



● 3 main approaches to I/O modeling and prediction in the litterature:
○ White-box

■ Access and/or modification of an application source code.
■ Adding hints or prefetching primitives to the application code

Background
I/O Modeling



● 3 main approaches to I/O modeling and prediction in the litterature:
○ White-box

■ Access and/or modification of an application source code.
■ Adding hints or prefetching primitives to the application code

○ Black-box
■ Intercepting I/Os.
■ Pattern matching, probabilistic models

Background
I/O Modeling



● 3 main approaches to I/O modeling and prediction in the litterature:
○ White-box

■ Access and/or modification of an application source code.
■ Adding hints or prefetching primitives to the application code

○ Black-box
■ Intercepting I/Os.
■ Pattern matching, probabilistic models

○ Grey-box [1]
■ Intercepting I/Os call stacks.

Extracting knowledge about an application
I/O structure using I/O call stacks.

Background
I/O Modeling

1: Dorier, Matthieu, et al. “Omnisc’IO: A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction”, SC’14



● 3 main approaches to I/O modeling and prediction in the litterature:
○ White-box → need source code

■ Access and/or modification of an application source code.
■ Adding hints or prefetching primitives to the application code

○ Black-box → scaling issues
■ Intercepting I/Os.
■ Pattern matching, probabilistic models

○ Grey-box [1] → deterministic I/Os only
■ Intercepting I/Os call stacks.

Extracting knowledge about an application
I/O structure using I/O call stacks.

Background
I/O Modeling

1: Dorier, Matthieu, et al. “Omnisc’IO: A Grammar-Based Approach to Spatial and Temporal I/O Patterns Prediction”, SC’14



Problem Statements

Hence the problem statements:

● What is the effect of Dynamic Voltage and Frequency Scaling on HPC I/Os?
● How to create a low-overhead I/O model for both deterministic and 

non-deterministic I/Os without access to the application source code?



I/O Modeling
Overview

● We created GrIOt, a grey-box approach based on a directed graph of call stacks.
○ Bounded size, depending on the number of unique call stacks.
○ Near O(1) prediction and update thanks to an hash map
○ Can support non-deterministic I/Os by adding metadata to nodes and edges 



I/O Modeling
Overview

● We created GrIOt, a grey-box approach based on a directed graph of call stacks.
○ Bounded size, depending on the number of unique call stacks.
○ Near O(1) prediction and update thanks to an hash map
○ Can support non-deterministic I/Os by adding metadata to nodes and edges 

○ 1 node = 1 or more I/O call stacks
○ 1 outgoing edge = 1 possible “next” I/O call stack



I/O Modeling
Overview

● We created GrIOt, a grey-box approach based on a directed graph of call stacks.
○ Bounded size, depending on the number of unique call stacks.
○ Near O(1) prediction and update thanks to an hash map
○ Can support non-deterministic I/Os by adding metadata to nodes and edges 

○ 1 node = 1 or more I/O call stacks
○ 1 outgoing edge = 1 possible “next” I/O call stack
○ New: 1 graph per process, or 1 graph per file. 



I/O Modeling
Overview



I/O Modeling
Tracing I/Os

● POSIX and Lib-C I/O function call interception through LD_PRELOAD
○ Indirect support of libraries such as HDF5 or MPI-IO

● Obtain the (relative) call stack and I/O parameters of every I/O

● Optional tracing of I/O call stacks for debug, as existing tracers did not support them



I/O Modeling
Tracing I/Os



I/O Modeling
Modeling

● I/O after I/O, GrIOt creates an I/O call stack graph
● When a new I/O call stack “A” is discovered, a graph node is created.
● When a new I/O call stack transition “A→B” is discovered, an edge is created. 



I/O Modeling
Modeling

● I/O after I/O, GrIOt creates an I/O call stack graph
● When a new I/O call stack “A” is discovered, a graph node is created.
● When a new I/O call stack transition “A→B” is discovered, an edge is created.
● 2 modeling granularities:

○ 1 graph per process
○ 1 graph per “open” call stack



I/O Modeling
Modeling

● I/O after I/O, GrIOt creates an I/O call stack graph
● When a new I/O call stack “A” is discovered, a graph node is created.
● When a new I/O call stack transition “A→B” is discovered, an edge is created.
● 2 modeling granularities:

○ 1 graph per process (previous version of GrIOt)
○ 1 graph per “open” call stack



I/O Modeling
Modeling

● I/O after I/O, GrIOt creates an I/O call stack graph
● When a new I/O call stack “A” is discovered, a graph node is created.
● When a new I/O call stack transition “A→B” is discovered, an edge is created.
● 2 modeling granularities:

○ 1 graph per process (previous version of GrIOt)
○ 1 graph per “open” call stack → enables per-file I/O prediction & model reuse 



I/O Modeling
Predicting

● If the node corresponding to the previous I/O call stack has no outgoing edge:



I/O Modeling
Predicting

● If the node corresponding to the previous I/O call stack has no outgoing edge:

● If the node has a single outgoing  edge:



I/O Modeling
Predicting

● If the node corresponding to the previous I/O call stack has no outgoing edge:

● If the node has a single outgoing  edge:

● If the node has more than a single edge:



I/O Modeling
Methodology

5 applications:

● NAMD: Molecular dynamics
● LAMMPS: Molecular dynamics
● Xcompact3d: Navier Stokes solver
● LQCD: Quantic chromodynamics
● Nemo: Ocean simulation



I/O Modeling
Methodology



I/O Modeling
Methodology

Purpose: Evaluating the overhead and accuracy of both model granularities.

● We run all 5 applications with both model granularities
● We compare GrIOt the state-of-the-art, Omnisc’IO
● We run all 5 applications again with only the I/O call stack instrumentation, 

with varying call stack depth, and compare POSIX backtrace with libunwind



I/O Modeling
Experimental Evaluation

● 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.

● Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

● A GPFS file system is used. It is under GPFS v5.1.8.0, with 8 volumes of 
50TB, for a total volume of 400TB.

● The Linux page cache and GPFS page pool are cleared between experiments 



I/O Modeling
Experimental Evaluation: GrIOt VS Omnisc’IO, Accuracy

GrIOt per-process is similar to Omnisc’IO in performance. GrIOt per open call stack is either similar or worse, depending on the application.



I/O Modeling
Experimental Evaluation: GrIOt VS Omnisc’IO, Weighted Accuracy

When accuracy is weighted by volume, it’s the opposite: GrIOt per open call stack has similar or better performance on all applications.



I/O Modeling
Experimental Evaluation: GrIOt VS Omnisc’IO, Model Overhead



I/O Modeling
Experimental Evaluation, GrIOt VS Omnisc’IO, Model size



I/O Modeling
Experimental Evaluation: Call stack depth VS Call stack differentiation



I/O Modeling
Experimental Evaluation: POSIX backtrace VS libunwind



I/O Modeling
Key Takeaways

● While GrIOt have a similar accuracy to Omnisc’IO, it has a better weighted 
accuracy (up to +90% on NAMD)



I/O Modeling
Key Takeaways

● While GrIOt have a similar accuracy to Omnisc’IO, it has a better weighted 
accuracy (up to +90% on NAMD)

● GrIOt with its per open call stack granularity has a much lower overhead as well



I/O Modeling
Key Takeaways

● While GrIOt have a similar accuracy to Omnisc’IO, it has a better weighted 
accuracy (up to +90% on NAMD)

● GrIOt with its per open call stack granularity has a much lower overhead as well
● Both GrIOt granularity have a much lower model size



I/O Modeling
Key Takeaways

● While GrIOt have a similar accuracy to Omnisc’IO, it has a better weighted 
accuracy (up to +90% on NAMD)

● GrIOt with its per open call stack granularity has a much lower overhead as well
● Both GrIOt granularity have a much lower model size
● It is not possible to reduce call stack depth to gain performance without losing 

information



I/O Modeling
Key Takeaways

● While GrIOt have a similar accuracy to Omnisc’IO, it has a better weighted 
accuracy (up to +90% on NAMD)

● GrIOt with its per open call stack granularity has a much lower overhead as well
● Both GrIOt granularity have a much lower model size
● It is not possible to reduce call stack depth to gain performance without losing 

information
● libunwind seems to have a better performance than POSIX backtrace



DVFS
Overview

In order to characterize DVFS for HPC, we provide an experimental methodology :

● Selecting the evaluation metrics
● Selecting the synthetic workloads
● Executing the workloads with varying CPU frequencies



DVFS
Methodology

3 metrics for performance and energy:

● Application duration (s)
● Average power (W, that is J.s-1)
● Energy consumption (J)

We use an out-of-band energy monitoring tool, that communicates with the 
Baseboard Management Controllers. As such, energy instrumentation includes 
every physical component on the instrumented compute nodes.



DVFS
Methodology

3 parallel configurable synthetic workloads, with one process per core:

● A CPU-bound compute task
● A Memory-bound compute task
● A sequential I/O benchmark



DVFS
Methodology



DVFS
Methodology



DVFS
Methodology



DVFS
Methodology



DVFS
Methodology

Purpose: Analyzing the effect of setting the CPU frequency during P-states

● Using the userspace cpufreq governor to set a CPU frequency target
● All C-states are enabled
● Running all 3 synthetic workloads 5 times with all the supported CPU 

frequencies



DVFS
Experimental Evaluation

● 20x computes nodes, with 2x AMD EPYC 7282 16-Core Processor each.

● Each CPU core supports only 3 CPU-frequencies: 1.5Ghz, 2.0Ghz, 2.8Ghz

● A GPFS file system is used. It is under GPFS v5.1.8.0, with 8 volumes of 
50TB, for a total volume of 400TB.

● The Linux page cache and GPFS page pool are cleared between experiments 



DVFS
Experimental Evaluation: P-states for the CPU-bound workload

● On CPU-bound tasks, reducing the CPU frequency leads to both a lower 
performance AND to an increased total energy consumption (up to +70%)



DVFS
Experimental Evaluation: P-states for the CPU-bound workload

● On CPU-bound tasks, reducing the CPU frequency leads to both a lower 
performance AND to an increased total energy consumption (up to +70%)



DVFS
Experimental Evaluation: P-states for the CPU-bound workload

● On CPU-bound tasks, reducing the CPU frequency leads to both a lower 
performance AND to an increased total energy consumption (up to +70%)



DVFS
Experimental Evaluation: P-states for the memory-bound workload

● On memory-bound tasks, reducing the CPU frequency leads to a slightly lower 
performance (-4%) and to a reduced total energy consumption (-9%)



DVFS
Experimental Evaluation: P-states for the memory-bound workload

● On memory-bound tasks, reducing the CPU frequency leads to a slightly lower 
performance (-4%) and to a reduced total energy consumption (-9%)



DVFS
Experimental Evaluation: P-states for the memory-bound workload

● On memory-bound tasks, reducing the CPU frequency leads to a slightly lower 
performance (-4%) and to a reduced total energy consumption (-9%)



DVFS
Experimental Evaluation: P-states for the buffered I/O workload

● On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage 
(up to -7%) at a variable performance cost (from none up to +17% task duration)



DVFS
Experimental Evaluation: P-states for the buffered I/O workload

● On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage 
(up to -7%) at a variable performance cost (from none up to +17% task duration)



DVFS
Experimental Evaluation: P-states for the buffered I/O workload

● On buffered I/O tasks, reducing the CPU frequency leads to a reduced power usage 
(up to -7%) at a variable performance cost (from none up to +17% task duration)



DVFS
Experimental Evaluation: P-states for the direct I/O workload

● On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power 
usage (up to -4%) and a lower performance (up to +9% task duration)



DVFS
Experimental Evaluation: P-states for the direct I/O workload

● On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power 
usage (up to -4%) and a lower performance (up to +9% task duration)



DVFS
Experimental Evaluation: P-states for the direct I/O workload

● On direct I/O tasks, reducing the CPU frequency leads to a slightly reduced power 
usage (up to -4%) and a lower performance (up to +9% task duration)



DVFS
Key Takeaways
● On a CPU-bound workload, the reduced power usage is not enough to 

compensate for the increased duration



● On a CPU-bound workload, the reduced power usage is not enough to 
compensate for the increased duration.

● On a Memory-bound workload, the reduced power usage is able to 
compensate for the increased duration, enabling energy optimization.

DVFS
Key Takeaways



● On a CPU-bound workload, the reduced power usage is not enough to 
compensate for the increased duration.

● On a Memory-bound workload, the reduced power usage is able to 
compensate for the increased duration, enabling energy optimization.

● On I/O workloads, we constantly observe a lower power usage with lower 
CPU frequencies, but also a variable performance loss.

DVFS
Key Takeaways



● On a CPU-bound workload, the reduced power usage is not enough to 
compensate for the increased duration.

● On a Memory-bound workload, the reduced power usage is able to 
compensate for the increased duration, enabling energy optimization.

● On I/O workloads, we constantly observe a lower power usage with lower 
CPU frequencies, but also a variable performance loss.

● Overall, while we were limited to a single CPU model and PFS in this study, 
we have demonstrated that there are I/O energy optimization opportunities 
with DVFS

DVFS
Key Takeaways



Conclusion and Future Works

● GrIOt with one graph per file enables I/O modeling and prediction with a 
similar or better prediction accuracy than state of the art. It also has less 
overhead and a lower memory footprint.



Conclusion and Future Works

● GrIOt with one graph per file enables I/O modeling and prediction with a 
similar or better prediction accuracy than state of the art. It also has less 
overhead and a lower memory footprint.

● We have demonstrated that there were energy optimization opportunities 
using DVFS.



Conclusion and Future Works

● GrIOt with one graph per file enables I/O modeling and prediction with a 
similar or better prediction accuracy than state of the art. It also has less 
overhead and a lower memory footprint.

● We have demonstrated that there were energy optimization opportunities 
using DVFS.

● Future works:
○ Extending our studies on DVFS to more software and hardware resources.
○ Extending our study on DVFS to provide an I/O energy predictive model.
○ Extending GrIOt to enable federating models made on multiple compute 

nodes into a single application model.
○ Using GrIOt to optimize I/O energy with DVFS.


