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Generative Ai has infiltrated the world due to its 
ability to approximate or even surpass human 
intelligence.

“Who doesn’t use generative AI? Exactly.”

● Latency 
● Privacy 

● High computing 
demands  

● Memory constrained 
● Smaller storage space

  Gen AI is being     pushed towards Edge [1]
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Problem justification
“Behind the success of generative AI” ● They are Large: they consume memory, compute and 

storage.
● Optimizations include: Quantization, pruning, 

distillation..etc [2-3]
⇒Tradeoff between latency and generation quality [2].

Rule of thumb: Take a model that can fit in memory.
However edge workload vary and static model deployment 
doesnt can underestimate or overestimate system’s needs.

Problem statement: How can we design an edge-optimized 
solution that accelerates LLM inference to meet real-time 
workload and Quality of Service (QoS) constraints?
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Contribution

●  Dynamic layer compression depending on its importance.
● Leverages a pool of models with different sizes to adapt

 to QoS dynamically such as latency, energy, and accuracy.
● Efficient storage to switch between models on demand.

                    Intelligent compression + Adaptability.
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