Leveraging Non-Volatile Main Memory to store the state of
Cloud applications reliably

Thomas Ropars
Ana Khorguani lvane Adam

Univ. Grenoble Alpes

UGA

Université
Grenoble Alpes

2024

Non-Volatile Main Memory (NVMM)

NVRAM, NVDIMM

DRAM

Byte-addressable
Fast

Persistent

NVMM

= Intel-Micron 3D XPoint memory modules (2017)

2024

A huge opportunity

Building highly efficient Fault-tolerant Cloud Applications

m Any interactive application
m In-memory KV store

m Our focus: Multi-threaded applications

2024

A huge opportunity

Building highly efficient Fault-tolerant Cloud Applications

m Any interactive application
m In-memory KV store

m Our focus: Multi-threaded applications

Some challenges

m Performance not on par with DRAM (6-8X slower write throughput)

m Intermediate caches can impair data persistence and consistency

2024

Work directions

Main research questions

m What API should be provided to programmers?

m What technique to efficiently save data in NVMM?

> In a server including only NVMM
» In a hybrid DRAM-NVMM server
» In a remote NVMM server

2024

Main results

About APIs

m Providing a simple APl to programmer provides huge advantages compared to
transparent solutions

» Concept of Restart Points

Techniques to save data

m NVMM-only: InCLL combined with Restart Points is the best technique
(Khorguani et al., Eurosys 2022)

m Hybrid servers: No single best technique
m Remote NVMM: Redo-logging seems to be the best approach (WIP)

2024

Using NVMM for fault tolerance

core core
cache | | cache
LLC

DRAM

Consistent state and performance

m Data movements between the cache and the
memory can be controlled by the application

> Explicit flush of cache lines (Slow)

2024

Using NVMM for fault tolerance

core core
cache | | cache
LLC

DRAM

Consistent state and performance

m Data movements between the cache and the
memory can be controlled by the application

> Explicit flush of cache lines (Slow)

m On cache-line eviction, data might be
written out-of-order to memory

2024

Cache-line eviction and consistent state

Produce in Producer-Consumer algo (FIFO Queue)

. . In cache:
int index;
type buffer [SIZE];
cll: Index = 2
void produce(type item){ \
lock (&mutex) E--
cl2 cl3 cl4d cl5
buffer[index] = item;
index++; In NVMM:
unlock (&mutex) Index = 2
} \

AlB[[]

2024

Cache-line eviction and consistent state

Produce in Producer-Consumer algo (FIFO Queue)

int index;
type buffer[SIZE];

void produce(type item){
lock (&mutex)

buffer[index] = item;
index++;

unlock (&mutex)

}

The state in NVMM can become inconsistent

In cache:

cll: Index = 3 \

In NVMM:

Index = 3

Cache invalidation guarantees a consistent state
Using clwb + MFENCE

int index; .

type buffer[SIZE]; In cache

void produce(type item){ cﬂ:hﬂex::2\\\
lock (&mutex)

Al [|
buffer[index] = item; c2 c3 cl4 cl5
clwb(&buffer[index]) ;

HEENCE In NVMM:
index++;
Index = 2
unlock (&mutex) \\\\
} ATE[[]

2024

Cache invalidation guarantees a consistent state
Using clwb + MFENCE

int index;

type buffer[SIZE]; In cache
void produce(type item){ cl1: Index =2 \\\
lock (&mutex)

AlB[Cc[]
buffer[index] = item; cl2 cl3 cl4 cl5
clwb(&buffer[index]) ;

MFENCE In NVMM:
index++;
Index = 2

unlock (&mutex) \\\\
¥ AfBlc] |

Huge impact on performance

2024

Cache invalidation guarantees a consistent state
Using clwb + MFENCE

int index; '

type buffer [SIZE]; In cache:

void produce(type item){ C”:”“eX::3\\\\\\
lock (&mutex)

(AlB[Cc] |
buffer[index] = item; c2 c3 cl4 cl5
clwb(&buffer[index]) ;

MFENCE In NVMM:
index++;
Index = 3
unlock (&mutex) \\\\\\\
} (ATelc[]

Huge impact on performance

2024

Solution for NVMM-only servers

ResPCT

Periodic synchronization with
NVMM

m High frequency checkpoints

m Flush modified data from
cache to NVMM

Epoch 1 j— Epoch 2 j—
checkpoint checkpoint
1 1

L} L}
Cache

Flush modified m

data
NVMM

2024

10

ResPCT

Periodic synchronization with
NVMM

m High frequency checkpoints

m Flush modified data from
cache to NVMM

Programmers identify Restart
Points
m Points in the execution where
a checkpoint can be taken

Epoch 1 j— Epoch 2 j—
checkpoint checkpoint
1 1

L} L}
Cache

Flush modified m

data
NVMM

void produce(type item){
lock (&mutex)
buffer[index] = item;
index—+-;
unlock(&mutex)

RP()

2024

10

In-Cache-Line Logging

Adapted from Cohen et al., ASPLOS 2019

An undo-log inside each cache line

variable backup

epoch_id |

i Cache! NVMM

= We fully avoid Flush/Fence instructions outside checkpoints

> We take advantage of the x86 guarantees regarding writes the same cache line
m We allow some inconsistencies in NVMM
> But we are always able to roll-back

m We also use InCLL to track modifications at no extra cost

2024

11

In-Cache-Line Logging

Adapted from Cohen et al., ASPLOS 2019

An undo-log inside each cache line

variable =| backup = | epoch_id =
new value| variable |current epoch

Cache

= We fully avoid Flush/Fence instructions outside checkpoints

> We take advantage of the x86 guarantees regarding writes the same cache line
m We allow some inconsistencies in NVMM
> But we are always able to roll-back

m We also use InCLL to track modifications at no extra cost

2024 11

Experimental setup

Hardware and software setup:
m A single server with two Intel Xeon Gold 5218 CPUs (64 logical cores)
m 384 GiB of DRAM and 1.5 TiB of Intel's Optane PMem
m Prototype of ResPCT in C
m Checkpoint period - 64 msec

Evaluated workloads:
m Highly efficient concurrent HashMap (2M items)

® Memcached - a popular in-memory key-value store

2024

12

Results for the HashMap

90% of updates

25.0

20.01

Mops/s

0.0

—4— ResPCT
=—ge——=PMThreads (Dual-Copy)

—@— Montage (CoW)
Trinity (InCLL + Transactions)

4 8 16 32 64
Threads

m ResPCT speed-up over best competitor: 1.36X
m ResPCT slowdown compared to non-modified hashmap: 8.3X

2024

13

Performance with Memcached

1M operations

25
[9)
(0]
wn
20
[o N
o
%515
5
él'o B Transient<DRAM>
305 B2 Transient<NVMM>
F I RespcT
0.0

w1.gn N
update:search ratio

ng:1h

m Overhead for the read-intensive workload: 5%

m Overhead for the write-intensive workload: 18.5%

2024

The case of hybrid servers

The limits of the NVMM-only approach

1.0
B2 Transient<DRAM>

B Transient<NVMM>

0.8 1

0.6

Normalized throughput

Queue Hashmap(read int.) Hashmap(write int.)

Performance is limited by the speed of NVMM

2024 16

The hybrid approach

m The application interacts with
DRAM

m NVMM stores backups

m Transfer from DRAM to
NVMM during checkpoints

» Transfer of the modified
parts of the memory

S e
¢ o
(\f\rppllcatlon %

L -

2024

PN
‘(Backup
A" J)

17

New questions

m What technique to use for consistent data transfer?

> No issue with cache-line invalidation but the server might still crash in the
middle of the transfer
> We evaluated the main approaches from SOA:
InCLL (Undo log)
Redo log [Aksun, EPFL 2021]
Dual copy [WU et al., PLDI 2020]

2024

18

New questions

m What technique to use for consistent data transfer?

> No issue with cache-line invalidation but the server might still crash in the
middle of the transfer
> \We evaluated the main approaches from SOA:
InCLL (Undo log)
Redo log [Aksun, EPFL 2021]
Dual copy [WU et al., PLDI 2020]

m What granularity to use for tracking modifications?

® What granularity to use for flushing modifications?

2024

18

The Redo-Logging approach

Checkpointing: Write a redo log of modifications to NVMM

v_datal

DRAM

v_data2 ‘ v_data3

X
v_datal

..... ‘ v_data2bZ
v_data3

pfdataz‘ p_data3

NVMM ‘p,datal

L3

REDO

Lo /

2024 19

The Redo-Logging approach

The state update is done in the background

DRAM ‘v,datal ‘ v_data2 ‘ v_data3 ‘

v_datal

NVMM ‘v,datal‘ v_data2 ‘ v,data3’

v_data2

\

v_data3

REDO
LOG

N

2024

20

The Dual-Copy approach

One copy is updated in a given checkpoint

DRAM

NVMM

v_datal

v_data2

v_data3

copyl

copy2

v_datal

v_data2

v_data3

p_datal

p_data2

p_data3

2024

The Dual-Copy approach

The other copy is updated in the next checkpoint (The previous copy becomes the
backup)

DRAM |v_datal|v_data2|v_data3| -----

copyl |p_datal|p_data2 p_data3| — -----

NVMM

copy2 |v_datal|v_data2|v_data3| -----

2024

Results for the HashMap (Read-intensive workload)

200

175

150

1254

Mops/s

754

50

25+

0

update=10% search=90%

100

— == Transient<DRAM>
----- ResPCT

_______________________________ —4— InCLL .
f—==Dual Copy

==}~ Redo Log
——
v
64 128 256 512 1024 2048 4096

Tracking Granularity

m Best results with Redo Logging
m Slowdown to Transient: 1.6X — Speedup to ResPCT: 2.7X

2024

23

Results for the HashMap (Write-intensive workload)

update=90% search=10%

200
== Transient<DRAM>
1754 === ResPCT
—4— InCLL
150+ f—==Dual Copy
_______________________________ Redo Log 4
125
k4
A
S 100 A
=
75+
501 /r/*—,‘
A
251

0 T T T T T T T
64 128 256 512 1024 2048 4096

Tracking Granularity

m Best results with Dual Copy

m About the tracking granularity:
> Small: More overhead for tracking, less for flushing
> Large: Less overhead for tracking, more for flushing

2024

24

Remote NVMM

Saving data in Remote NVMM

RDMA writes to NVMM can be made persistent

m By de-activating DDIO

m Issuing a flush after the write operation

Client: |

CPU

T
DRAM 3

NIC

RDMA write()

Server: |

CPU

NVMM

RDMA read()

2024

26

Saving data in Remote NVMM

RDMA writes to NVMM can be made persistent

m By de-activating DDIO

m Issuing a flush after the write operation

Client: |

CPU
T

DRAM 3

NIC

RDMA write()

Server: |

CPU

NVMM

Our approach

RDMA read()

m Same checkpointing approach as before

m Algorithm:

» Writing a Redo-Log to Remote NVMM using RDMA

> Updating the persistent state in the background

2024

26

Preliminary results with MemCached (1M Keys)

Network used: Omni-Path 100G

[Memcached
| EEA Remote Dual Copy
I Our approach

50% update 5% update

m Important for performance: Writing large memory blocks
> Otherwise performance is limited by the network latency

2024

27

Conclusion

Main results

A new approach for saving application state to NVMM

m Periodic checkpoints

m Restart Points specified by the programmer

Performance
m Better performance than SOA:

> NVMM-only: InCLL
» Hybrid servers: Dual Copy or Redo Logging

m Best technique depends on the considered hardware architecture
» Redo Logging is the most promissing for Remote NVMM

2024

29

Future Directions

Consider other technologies (PEPR Cloud)

= NVMe

> Ability to do remote writes directly to NVMe devices?
» WiP: Go through an intermediate copy in remote DRAM

m CXL memory expanders

» Support for flush operations included
» Expanders start appearing

2024

30

Leveraging Non-Volatile Main Memory to store the state of
Cloud applications reliably

Thomas Ropars
Ana Khorguani lvane Adam

Univ. Grenoble Alpes

UGA

Université
Grenoble Alpes

2024

31

	Solution for NVMM-only servers
	The case of hybrid servers
	Remote NVMM
	Conclusion

