
Per3S: Performance and Scalability of Storage Systems (8th edition of the Workshop)
Tuesday, 28 May 2024 - Paris, France

Overview

● Darshan in Brief

● PyDarshan Design and APIs

● Case Studies

○ Use Case 1: Enhancing single job summaries with HTML reports and modular templates for more

interactivity using a large-scale run of the E3SM

○ Use Case 2: Enabling custom analysis tools building on top of Darshan using the examples of DXT

Explorer and Drishti

○ Use Case 3: Customizing I/O analysis of workflows using the example of ATLAS AthenaMP, a

high-energy physics simulation

○ Use Case 4: Enabling the analysis of large bodies of Darshan logs with hundreds of thousands of jobs

on the Cori and Theta supercomputers

2

3

HPC I/O and Storage

A state of the art data center with multiple storage services/tiers. Increasingly heterogeneous;

New storage/data services emerging. This perspective is often unknown to users.

Software Perspective: Data passes through various middleware layers to storage.
Instrumentation, for example, using Darshan.

#!/bin/bash

export LD_PRELOAD=libdarshan.so
./app

4

Software Perspective: Instrumentation, for example, using Darshan offers job/app granularity!
Interpretation requires understanding of execution context. 5

Need to consider broader execution context!
6

Need to consider broader execution context!
7

Holistic Perspective: Many technologies, many layers, many instrumentation/tunable APIs. 8

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

Storage Optimization from Application, over HDF5, to file I/O targeting Lustre. 9

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

Storage Optimization from Application, over HDF5, to file I/O targeting Lustre. 10

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

11Storage Optimization from Application, over HDF5, to file I/O targeting Lustre.

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

12Storage Optimization from Application, over HDF5, to file I/O targeting Lustre.

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

13Storage Optimization from Application, over HDF5, to file I/O targeting Lustre.

Logical perspective is lost as
objects from an HDF5

perspective become just
byte-streams from a file

system perspective.

14Storage Optimization from Application, over HDF5, to file I/O targeting Lustre.

Darshan’s Architecture

1. Multi-Layer Runtime Library for Instrumentation
○ POSIX, STDIO, MPI-IO, HDF-5, LUSTRE, …

○ Custom Modules

2. Darshan Utilities
○ CLI Tool Collection

i. Parser

ii. DXT Parser

iii. Merge/Filter

○ PyDarshan

i. Python API

ii. Fine-Granular Access

iii. Bridge to Python’s data analysis and machine

learning libraries/ecosystem

15

PyDarshan in Detail

● PyDarshan CLI Interface

● Darshan Report/Log Objects

● Darshan Record Collections

● Darshan CFFI-Backend to access binary data

Facilitate:

● Interactive Visualisation

● Modernization of Reports (HTML)

● Common Plots for Reuse

● Analysis in Jupyter Notebooks

● Fine-Grained Data Loading for Analysis and

Machine Learning Libraries

16

PyDarshan API Usage Example

open a Darshan log file and read all data
with darshan.DarshanReport(filename, read_all=True) as report:

 # print the metadata dict for this log
 print('metadata: ', report.metadata)

 # print job runtime and nprocs
 print('run_time: ', report.metadata['job']['run_time'])
 print('nprocs: ', report.metadata['job']['nprocs'])

 # print modules contained in the report
 print('modules: ', list(report.modules.keys()))

 # export POSIX module records to DataFrame and print
 posix_df = report.records['POSIX'].to_df()
 display(posix_df)

17

PyDarshan API Usage Example (Low-Level)

import darshan.backend.cffi_backend as darshanll

log = darshanll.log_open('example.darshan')

Access various job information
darshanll.log_get_job(log)
Example Return:
{'jobid': 4478544, 'uid': 69615,
'start_time': 1490000867, 'end_time': 1490000983,
'metadata': {'lib_ver': '3.1.3', 'h': 'romio_no_indep_rw=true;cb_nodes=4'}}

Access available modules and modules
darshanll.log_get_modules(log)
Example Return:
{'POSIX': {'len': 186, 'ver': 3, 'idx': 1},
'MPI-IO': {'len': 154, 'ver': 2, 'idx': 2},
'LUSTRE': {'len': 87, 'ver': 1, 'idx': 6},
'STDIO': {'len': 3234, 'ver': 1, 'idx': 7}}

Access different record types as numpy arrays, with integer and float counters separated
Example Return: {'counters': array([...], dtype=uint64), 'fcounters': array([...])}
posix_record = darshanll.log_get_record(log , 'POSIX')
mpiio_record = darshanll.log_get_record(log , 'MPI-IO')
stdio_record = darshanll.log_get_record(log , 'STDIO')
...

darshanll.log_close(log)

18

Use Case 1:
Enhancing single job
summaries with HTML
reports

Allowing modular templates for more
interactivity using a large-scale run of the
E3SM

19

20

21

Use Case 2:
Enabling custom analysis
tools building on top of
Darshan

Here using the examples of
DXT Explorer and Drishti:
https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/drishti-io

22

MPIIO
vs. POSIX

Custom Heuristics for Workload
Characterization and

Recommendations

Custom
Visualization

https://github.com/hpc-io/dxt-explorer
https://github.com/hpc-io/drishti-io

Drishti Overview

23

24

MPIIO
vs. POSIX

25

Custom Heuristics for Workload
Characterization and

Recommendations

Use Case 3: Customizing
I/O analysis of workflows

Using the example of ATLAS AthenaMP,
a high-energy physics simulation.

26

Custom vizualisations
catering to needs of

Science Teams

Complex
Science

Workflow

27

28

29

30

31

[...]

Out of memory: Kill process 43805
Killed process 43805

$ |

Use Case 4: Enabling the
Analysis of large bodies
of Darshan logs

Scaling to hundreds of thousands
of jobs on the Cori and Theta
supercomputers

32

[...]

Out of memory: Kill process 43805
Killed process 43805

$ |

Site-Wide Analysis: MPI I/O Collective Skew Across Ranks

Collective operations across ranks routinely have

to wait for POSIX I/O in other ranks to finish. This

use case demonstrates how PyDarshan can be

used to quantify the skew that occurs between

the MPI I/O and POSIX layers.

Example:

33

34

Summary

● PyDarshan Design and APIs
● Case Studies

○ Use Case 1: Enhancing single job summaries with HTML reports and modular
templates for more interactivity using a large-scale run of the E3SM

○ Use Case 2: Enabling custom analysis tools building on top of Darshan using the
examples of DXT Explorer and Drishti

○ Use Case 3: Customizing I/O analysis of workflows using the example of ATLAS
AthenaMP, a high-energy physics simulation

○ Use Case 4: Enabling the analysis of large bodies of Darshan logs with hundreds of
thousands of jobs on the Cori and Theta supercomputers

Find out more or contribute at: Try it yourself:
https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan pip install darshan

35

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan

