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Context – Cloud Service Models
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Context – Serverless Cloud Challenges

• Dynamic resources allocation:
Rightsizing? Scaling from zero?

• Instantiating a function = cold start
delay

• Dynamic function scheduling: Mapping
requests?

• Per-request QoS requirements
• Various levels of performance across
heterogeneous hardware

We proposed a cost-aware policy for
private cloud serverless platforms that
allowed reduced energy consumption while
achieving SLA [6]

Serverless platforms dynamically (de)allocate hardware

resources following load variations on applications [8]
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Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)
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Context – IDS Application

• Use case: Intrusion Detection Systems
• Intermittent use of resources

• IDS is only useful during drone
missions

• IDS relies on Machine Learning
algorithms

• Random Forests, Neural Networks
• Leverage hardware accelerators

• Challenges:
• Scheduling functions chains
• Heavyweight function images (CUDA...)
• Very short execution times (hundredths
of milliseconds)

• Intermediate data communication and
storage
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Context – Problem Justification

25% of functions at Microsoft Azure Functions are executed in

100 ms or less [9]

Remote storage communications induce critical slowdowns [11]
Pulling function images accounts for more than 80% of total

response time [12]
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Contribution – Problem Statement

How to account for initialization and communication delays when deploying chains of
short-lived serverless functions on edge cloud, leveraging heterogeneous hardware to
optimize time-sensitive applications that require variable QoS, while limiting the number

of edge nodes used?

Table 1: Breakdown of storage impacts on cost

Impact Cost
Resources allocation Function response time I/O bandwidth (Gbps)

Resource contention I/O capacity (GB)
Function scheduling SLA penalties I/O latency (ms)

Tasks consolidation I/O capacity (GB)

Application execution
Inter-function
communications

I/O latency (ms)

Output data storage I/O capacity (MB)
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Contribution – Function Cache and Function Communications

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

Policy to prevent contention on node storage between function cache and function
communications
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Contribution – State of the Art

Table 2: State-of-the-Art work on data-aware autoscaling platforms

Function

chains
QoS-aware

Hardware

heterogene-

ity

Program-

ming

constraint

Energy con-

sumption

Function

cache

Function

communica-

tions

Cypress [2] 3 3 7 3 3 7 3

FaDO [10] 7 7 7 3 7 7 3

FaasFlow [7] 3 7 7 7 7 7 7

FIRST [13] 7 7 7 3 3 7 7

HeROfake [6] 7 3 3 3 3 7 7

Netherite [3] 3 7 7 3 7 7 3

Palette [1] 3 7 7 7 7 3 3

Target solution 3 3 3 3 3 3 3
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Contribution – Overall System
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Contribution – Overview

• Cost model
• Resources allocation: how to rightsize
the pool of function replicas?

• Tasks placement: how to map user
requests with different QoS levels to
heterogeneous replicas?

• Orchestration policy
• Minimize orchestration cost
• Leveraging hardware heterogeneity and
data locality

• Simulation environment
• Observing a ”live” system to
understand the moving parts

• Evaluating and comparing different
policies on QoS metrics
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Contribution – Cost Model
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Contribution – Characterization on Heterogeneous Hardware

Latency characterization of IDS models Energy consumption characterization of IDS mdoels
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Contribution – Cost Minimization Strategy

Autoscaling

→ increased consolidation
→ reduced makespan

→ reduced energy consumption
→ reduced cost of ownership

∀N,∀P ∈ N, scaleCost
fiN,P
a =

kCP · CPaN
+kTT · TT fN,P
+kEC · ECfN,P
+kHP · HPfN,P

(1)

Scheduling

→ avoid missed deadlines
→ use less power

→ enforce high resource usage

∀(N,P) ∈ Rf , schedCostfiN,P =

kQP · QPfN,P
+kEC · ECfN,P
+kTC · TCfN,P

(2)
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Evaluation – Simulation Environment

• HeROsim
• In-house open source simulation tool
• https://github.com/b-com/HeROsim

• Artifacts evaluated: ORO, ROR, ROR-R
• Thank you, reviewers!

• Baseline policies:
• Knative (KN) – Least Connected load
balancing

• Amazon Lambda (BPFF) – Bin-Packing
First Fit consolidation

• HeROfake (HRO) – Storage-oblivious,
heterogeneity-aware policy

• Random Placement (RP) – what could
go wrong?

• Synthetic workload
• Poisson process, λ = 83
• Duration: 30 minutes
• Uniform distribution of QoS levels and
application requests

• 10 nodes in the infrastructure
• 8 Raspberry Pi 4B
• 1 Nvidia Xavier Jetson
• 1 Xilinx Pynq Z2

• 100 Mbps network link between nodes
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Evaluation - Against Baselines

Consolidation across nodes and penalty proportions Cold start proportions and local communications
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Evaluation - Individual Components

Consolidation across nodes and penalty proportions Cold start proportions and local communications
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Conclusion

• HeROcache enforces applications consolidation:
• reduces average initialization delays by 17.6%
• cuts communication delays by 88.4%

• HeROcache enhances Quality of Service:
• potential reduction of static energy consumption by 80%
• maintains under 28% of QoS violations
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Perspectives

• Limits of HeROcache:
• Greedy algorithms!
• Will not scale to large infrastructures...

• Machine Learning?
• Duality between prediction and
reaction

• Proactive allocation (time series
prediction)

• Reactive scheduling (Q-Learning agent)

https://xkcd.com/1838/

19

https://xkcd.com/1838/


Thank you!

Questions?

vincent.lannurien@ensta-bretagne.org

https://github.com/b-com/HeROsim
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