
HeROcache: Storage-Aware Scheduling in Heterogeneous
Serverless Edge
The Case of Intrusion Detection Systems

Vincent Lannurien,∗† Camélia Slimani,† Laurent D’Orazio,∗‡ Olivier Barais∗‡

Stéphane Paquelet,∗ Jalil Boukhobza∗†

May 28, 2024
∗ b<>com Institute of Research and Technology
† ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285
‡ Univ. Rennes, Inria, CNRS, IRISA



Table of Contents

1. Context

2. Problem

3. Contribution

4. Evaluation

5. Conclusion

1



Context – Cloud Service Models

2



Context – Serverless Cloud Challenges

• Dynamic resources allocation:
Rightsizing? Scaling from zero?

• Instantiating a function = cold start
delay

• Dynamic function scheduling: Mapping
requests?

• Per-request QoS requirements
• Various levels of performance across
heterogeneous hardware

We proposed a cost-aware policy for
private cloud serverless platforms that
allowed reduced energy consumption while
achieving SLA [6]

Serverless platforms dynamically (de)allocate hardware

resources following load variations on applications [8]

3



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – Serverless Cloud Challenges

• Serverless resources are not reserved [8]
• Increased provider’s responsibility

• Dynamic allocation (following load variations)
• Dynamic placement (mapping requests to resources)

• Cloud resources are heterogeneous [5]
• Various levels of performance
• Various levels of cost

• Load is unpredictable [9]
• Stochastic barrier
• Need for an online solution

• Users have various QoS requirements [4]
• Some use cases are throughput-centric (batch jobs)
• Others need lower latency (interactive jobs)

4



Context – IDS Application

• Use case: Intrusion Detection Systems
• Intermittent use of resources

• IDS is only useful during drone
missions

• IDS relies on Machine Learning
algorithms

• Random Forests, Neural Networks
• Leverage hardware accelerators

• Challenges:
• Scheduling functions chains
• Heavyweight function images (CUDA...)
• Very short execution times (hundredths
of milliseconds)

• Intermediate data communication and
storage

5



Context – Problem Justification

25% of functions at Microsoft Azure Functions are executed in

100 ms or less [9]

Remote storage communications induce critical slowdowns [11]
Pulling function images accounts for more than 80% of total

response time [12]

6



Contribution – Problem Statement

How to account for initialization and communication delays when deploying chains of
short-lived serverless functions on edge cloud, leveraging heterogeneous hardware to
optimize time-sensitive applications that require variable QoS, while limiting the number

of edge nodes used?

Table 1: Breakdown of storage impacts on cost

Impact Cost
Resources allocation Function response time I/O bandwidth (Gbps)

Resource contention I/O capacity (GB)
Function scheduling SLA penalties I/O latency (ms)

Tasks consolidation I/O capacity (GB)

Application execution
Inter-function
communications

I/O latency (ms)

Output data storage I/O capacity (MB)

7



Contribution – Function Cache and Function Communications

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

Policy to prevent contention on node storage between function cache and function
communications

8



Contribution – Function Cache and Function Communications

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

Policy to prevent contention on node storage between function cache and function
communications

8



Contribution – Function Cache and Function Communications

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

Policy to prevent contention on node storage between function cache and function
communications

8



Contribution – Function Cache and Function Communications

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

Policy to prevent contention on node storage between function cache and function
communications

8



Contribution – State of the Art

Table 2: State-of-the-Art work on data-aware autoscaling platforms

Function

chains
QoS-aware

Hardware

heterogene-

ity

Program-

ming

constraint

Energy con-

sumption

Function

cache

Function

communica-

tions

Cypress [2] 3 3 7 3 3 7 3

FaDO [10] 7 7 7 3 7 7 3

FaasFlow [7] 3 7 7 7 7 7 7

FIRST [13] 7 7 7 3 3 7 7

HeROfake [6] 7 3 3 3 3 7 7

Netherite [3] 3 7 7 3 7 7 3

Palette [1] 3 7 7 7 7 3 3

Target solution 3 3 3 3 3 3 3

9



Contribution – Overall System

10



Contribution – Overview

• Cost model
• Resources allocation: how to rightsize
the pool of function replicas?

• Tasks placement: how to map user
requests with different QoS levels to
heterogeneous replicas?

• Orchestration policy
• Minimize orchestration cost
• Leveraging hardware heterogeneity and
data locality

• Simulation environment
• Observing a ”live” system to
understand the moving parts

• Evaluating and comparing different
policies on QoS metrics

11



Contribution – Cost Model

12



Contribution – Characterization on Heterogeneous Hardware

Latency characterization of IDS models Energy consumption characterization of IDS mdoels

13



Contribution – Cost Minimization Strategy

Autoscaling

→ increased consolidation
→ reduced makespan

→ reduced energy consumption
→ reduced cost of ownership

∀N,∀P ∈ N, scaleCost
fiN,P
a =

kCP · CPaN
+kTT · TT fN,P
+kEC · ECfN,P
+kHP · HPfN,P

(1)

Scheduling

→ avoid missed deadlines
→ use less power

→ enforce high resource usage

∀(N,P) ∈ Rf , schedCostfiN,P =

kQP · QPfN,P
+kEC · ECfN,P
+kTC · TCfN,P

(2)

14



Evaluation – Simulation Environment

• HeROsim
• In-house open source simulation tool
• https://github.com/b-com/HeROsim

• Artifacts evaluated: ORO, ROR, ROR-R
• Thank you, reviewers!

• Baseline policies:
• Knative (KN) – Least Connected load
balancing

• Amazon Lambda (BPFF) – Bin-Packing
First Fit consolidation

• HeROfake (HRO) – Storage-oblivious,
heterogeneity-aware policy

• Random Placement (RP) – what could
go wrong?

• Synthetic workload
• Poisson process, λ = 83
• Duration: 30 minutes
• Uniform distribution of QoS levels and
application requests

• 10 nodes in the infrastructure
• 8 Raspberry Pi 4B
• 1 Nvidia Xavier Jetson
• 1 Xilinx Pynq Z2

• 100 Mbps network link between nodes

15

https://github.com/b-com/HeROsim


Evaluation - Against Baselines

Consolidation across nodes and penalty proportions Cold start proportions and local communications

16



Evaluation - Individual Components

Consolidation across nodes and penalty proportions Cold start proportions and local communications

17



Conclusion

• HeROcache enforces applications consolidation:
• reduces average initialization delays by 17.6%
• cuts communication delays by 88.4%

• HeROcache enhances Quality of Service:
• potential reduction of static energy consumption by 80%
• maintains under 28% of QoS violations

18



Perspectives

• Limits of HeROcache:
• Greedy algorithms!
• Will not scale to large infrastructures...

• Machine Learning?
• Duality between prediction and
reaction

• Proactive allocation (time series
prediction)

• Reactive scheduling (Q-Learning agent)

https://xkcd.com/1838/

19

https://xkcd.com/1838/


Thank you!

Questions?

vincent.lannurien@ensta-bretagne.org

https://github.com/b-com/HeROsim

19

mailto:vincent.lannurien@ensta-bretagne.org
https://github.com/b-com/HeROsim


References i

M. Abdi, S. Ginzburg, X. C. Lin, J. Faleiro, G. I. Chaudhry, I. Goiri, R. Bianchini, D. S. Berger,
and R. Fonseca.
Palette Load Balancing: Locality Hints for Serverless Functions.
In EuroSys ’23, pages 365–380, Rome Italy, May 2023. ACM.

V. M. Bhasi, J. R. Gunasekaran, A. Sharma, M. T. Kandemir, and C. Das.
Cypress: Input Size-Sensitive Container Provisioning and Request Scheduling for
Serverless Platforms.
In SoCC ’22, pages 257–272, San Francisco California, Nov. 2022. ACM.

S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas, C. McMahon, C. S.
Meiklejohn, and X. Zhu.
Netherite: Efficient Execution of Serverless Workflows.
Proc. VLDB Endow., 15(8):1591–1604, apr 2022.



References ii

R. Buyya, S. K. Garg, R. N. Calheiros, and B. Bla.
SLA-oriented resource provisioning for cloud computing: Challenges, architecture,
and solutions.
In CSC ’11. IEEE, 2011.

E. Horta, H.-R. Chuang, N. R. VSathish, C. Philippidis, A. Barbalace, P. Olivier, and
B. Ravindran.
Xar-Trek: Run-Time Execution Migration among FPGAs and Heterogeneous-ISA CPUs.
In Middleware ’22. ACM, 2021.

V. Lannurien, L. D’Orazio, O. Barais, E. Bernard, O. Weppe, L. Beaulieu, A. Kacete,
S. Paquelet, and J. Boukhobza.
HeROfake: Heterogeneous Resources Orchestration in a Serverless Cloud – An
Application to Deepfake Detection.
2023.



References iii

Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng, and M. Guo.
FaaSFlow: Enable Efficient Workflow Execution for Function-as-a-Service.
In ASPLOS ’22, page 782–796, New York, NY, USA, 2022. Association for Computing
Machinery.

J. Schleier-Smith, V. Sreekanti, A. Khandelwal, J. Carreira, N. J. Yadwadkar, R. A. Popa,
J. E. Gonzalez, I. Stoica, and D. A. Patterson.
What Serverless Computing is and Should Become: The next Phase of Cloud
Computing.
Commun. ACM, 2021.



References iv

M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini.
Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a
Large Cloud Provider.
USENIX ATC’20, 2020.

C. P. Smith, A. Jindal, M. Chadha, M. Gerndt, and S. Benedict.
FaDO: FaaS Functions and Data Orchestrator for Multiple Serverless Edge-Cloud
Clusters.
In ICFEC 2022, pages 17–25, Messina, Italy, May 2022. IEEE.

M. Wawrzoniak, I. Müller, R. Fraga Barcelos Paulus Bruno, and G. Alonso.
Boxer: Data Analytics on Network-enabled Serverless Platforms.
2021.



References v

B. Yan, H. Gao, H. Wu, W. Zhang, L. Hua, and T. Huang.
Hermes: Efficient Cache Management for Container-based Serverless Computing.
In 12th Asia-Pacific Symposium on Internetware, Singapore, 2020. ACM.

L. Zhang, C. Li, X. Wang, W. Feng, Z. Yu, Q. Chen, J. Leng, M. Guo, P. Yang, and S. Yue.
FIRST: Exploiting the Multi-Dimensional Attributes of Functions for Power-Aware
Serverless Computing.
In IPDPS 2023, pages 864–874, St. Petersburg, FL, USA, May 2023. IEEE.


	Context
	Problem
	Contribution
	Evaluation
	Conclusion
	Appendix

