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Context — Cloud Service Models
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Context - Serverless Cloud Challenges

- Dynamic resources allocation:
Rightsizing? Scaling from zero?
- Instantiating a function = cold start
delay
- Dynamic function scheduling: Mapping
requests?
- Per-request QoS requirements
- Various levels of performance across
heterogeneous hardware

¢« We proposed a cost-aware policy for

Resource Quantity
Allocated and Charged

L ——

(| Serverful (charged by reservation)

- Serverless (no charge for idle)
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private cloud serverless platforms that
allowed reduced energy consumption while
achieving SLA [6]

Serverless platforms dynamically (de)allocate hardware

resources following load variations on applications [8]
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Context - Serverless Cloud Challenges

- Serverless resources are not reserved [8]
- Increased provider's responsibility

- Dynamic allocation (following load variations)
- Dynamic placement (mapping requests to resources)

- Cloud resources are heterogeneous [5]
- Various levels of performance
- Various levels of cost
- Load is unpredictable [9]
- Stochastic barrier
- Need for an online solution
- Users have various QoS requirements [4]

- Some use cases are throughput-centric (batch jobs)
- Others need lower latency (interactive jobs)



Context — IDS Application

lassificat
- Use case: Intrusion Detection Systems [ incrusion oesection systen

- Intermittent use of resources

- IDS is only useful during drone

Inference
No preprocessing
Random
. Forest
Preprocessing
Rach Auto- Deep Neural
missions Encoder ] Network 1
i7 Tcp
User t

- IDS relies on Machine Learning eraffic L[,,] veep 1}
a[gonthms ‘ System ) Network 2

- Random Forests, Neural Networks
- Leverage hardware accelerators

onvolutional
Neural
Network

- Challenges:

- Scheduling functions chains

- Heavyweight function images (CUDA...)

- Very short execution times (hundredths
of milliseconds)

- Intermediate data communication and
storage




Context — Problem Justification
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25% of functions at Microsoft Azure Functions are executed in

100 ms or less [9]
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Remote storage communications induce critical slowdowns [11]
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Pulling function images accounts for more than 80% of total

response time [12]



Contribution - Problem Statement

How to account for initialization and communication delays when deploying chains of
short-lived serverless functions on edge cloud, leveraging heterogeneous hardware to
optimize time-sensitive applications that require variable QoS, while limiting the number
of edge nodes used?

Table 1: Breakdown of storage impacts on cost

Impact Cost
Resources allocation Function response time 1/0 bandwidth (Gbps)
Resource contention 1/0 capacity (GB)
Function scheduling SLA penalties 1/0 latency (ms)
Tasks consolidation 1/0 capacity (GB)

Inter-function
communications
Output data storage 1/0 capacity (MB)

Application execution 1/0 latency (ms)




Contribution - Function Cache and Function Communications
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Contribution - Function Cache and Function Communications

" ] hode 3
function 1 : app A function 2 : app A €
function 2 : app A <—|

use [— — — — — —
Node 2
function 1 : app A
Network
Storage

Policy to manage node function images
cache and minimize cold start delays

(N J




Contribution - Function Cache and Function Communications

—TT— Hode 3

function 1 : app A function 2 : app A €
’7 function 2 : app A <—|
user | o [—T S— — —T — —
Node 2

function 1 : app A
Network
Storage

B8

Policy to manage node function images
cache and minimize cold start delays

Policy to consolidate functions and
maximize node-local communications

(N J




Contribution - Function Cache and Function Communications

[ Node 1 ] Node 3
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Contribution - State of the Art

Table 2: State-of-the-Art work on data-aware autoscaling platforms

Hardware Program- Function
Function Energy con- Function
QoS-aware heterogene- ming communica-
chains ) . sumption cache )
ity constraint tions

Cypress [2] X X
FaDO [10] X X X X X
FaasFlow [7] X X X X X X
FIRST [13] X X X X X
HeROfake [6] X X X
Netherite [3] X X X X
Palette [1] X X X X

Target solution




Contribution - Overall System

offline

Function Store

Metadata Store

@ func-1-cru

Memory Requirements

func-1-GrPU GPU Execution Time
func-1-FrPGa T DLA cold start Time
Developer |

func-1-pLa B H i Energy Consumption

CE ) |mase size

w ﬁ E Ccommunications size

online
archestrator L -

v

Request
/func-1

Qos: High

e Request
- {

Autoscaler

scheduler,

user

—> Output

Input

Execution Platf
No repli
func-1

func-2

func-3

orms

ca

Infrastructure

Node | Node | Node
1 2 3
cpu | [cpu | [crPu
GPU | | GPUT| [ GPU

~




Contribution - Overview

- Cost model

Resources allocation: how to rightsize
the pool of function replicas?

- Tasks placement: how to map user
requests with different QoS levels to
heterogeneous replicas?
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Contribution - Cost Model
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Contribution - Characterization on Heterogeneous Hardware
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Contribution - Cost Minimization Strategy

Autoscaling

Scheduling
— increased consolidation
— reduced makespan — avoid missed deadlines
— reduced energy consumption — use less power
— reduced cost of ownership — enforce high resource usage
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Evaluation — Simulation Environment

- HeROsim

- In-house open source simulation tool
- https://github.com/b-com/HeROsim
- Artifacts evaluated: ORO, ROR, ROR-R
- Thank you, reviewers!
- Baseline policies:
- Knative (KN) - Least Connected load
balancing
- Amazon Lambda (BPFF) - Bin-Packing
First Fit consolidation
- HeROfake (HRO) - Storage-oblivious,
heterogeneity-aware policy
- Random Placement (RP) - what could
go wrong?

- Synthetic workload

- Poisson process, A = 83

- Duration: 30 minutes

- Uniform distribution of QoS levels and
application requests

- 10 nodes in the infrastructure

- 8 Raspberry Pi 4B
- 1 Nvidia Xavier Jetson
+ 1 Xilinx Pynq 72

- 100 Mbps network link between nodes


https://github.com/b-com/HeROsim
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Conclusion

- HeROcache enforces applications consolidation:

- reduces average initialization delays by 17.6%
- cuts communication delays by 88.4%

- HeROcache enhances Quality of Service:

- potential reduction of static energy consumption by 80%
- maintains under 28% of QoS violations



THIS 15 YOUR MACHINE LERARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
- Limits of HeROcache: THE ANSLWERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

- Greedy algorithms!
- Will not scale to large infrastructures...

- Machine Learning?
- Duality between prediction and
reaction
- Proactive allocation (time series
prediction)
- Reactive scheduling (Q-Learning agent)

https://xkcd.com/1838/

19


https://xkcd.com/1838/

Thank you!

A

Questions?

vincent.lannurien@ensta-bretagne.org

@ https://github.com/b-com/HeROsim


mailto:vincent.lannurien@ensta-bretagne.org
https://github.com/b-com/HeROsim
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