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Comparison of memory technologies used in HPC1

Context

(1) Lüttgau, Jakob, et al. "Survey of storage systems for high-performance computing." Supercomputing Frontiers and Innovations 5.1 (2018).

• There is a gap in performance between volatile memory 
and storage:

• Parallel File Systems are used to increase 
throughput, but they can’t help with the latency

• Heterogenous storage systems are used to combine 
price and performance, but they require adapted 
data placement policies

• In data placement policies, “prefetching” is moving 
data that will be used in the near future from slower 
to faster storage, increasing the I/O performance

• We focus on the predictive prefetching of data directly into compute nodes.

11/12/2023
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Context

• One prerequisite to predictive prefetch is the knowledge on an application future I/O behavior.

• Three main approaches:

➢ White-box

• Access and/or modification of an application source code.

• Adding hints or prefetching primitives to the application code

➢ Black-box

• Intercepting I/Os.

• Pattern matching, probabilistic models

➢ Gray-Box

• Intercepting I/Os call stacks. Extracting knowledge about an

application I/O structure using I/O call stacks.

Source 
code

Application LibC / POSIX / …Tracer

I/Os parameters

Application LibC / POSIX / …Tracer

I/Os parameters
and call stacks
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• State of the art Omnisc’IO1 encodes the I/O call stack sequence through the compression algorithm 
StarSequitur.

+ The model encodes losslessly the original sequence of I/O.
- It grows in size and complexity when I/Os are not fully deterministic
- It does not include probabilities or heuristics

State of the art

(1) Dorier, Matthieu, et al. "Omnisc'IO: a grammar-based approach to spatial and temporal I/O patterns prediction." SC'14. IEEE, 2014.
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How to model the I/O structure of applications with both deterministic and non-deterministic I/O from I/O call 
stacks (grey-box) and use this model to make I/O predictions for efficient prefetch ?

Problem Statement

A directed graph of call stacks:

• Has a bounded size, because an application source code has a 
limited number of different I/O call stacks

• Can support probabilistic behavior by adding metadata to the edges

We present GrIOt, a Graph-based Modeling of I/O call stacks for Predictive 
Prefetch.
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Contribution
GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch

Next node prediction
= I/O call stacks prediction
= I/O parameters prediction
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Contribution
Tracing I/O and call stacks

• Created of a simple tracer using LD_PRELOAD. Support for standard 
POSIX / libC I/O functions that are dynamically linked.

• Obtain the (relative) call stack and I/O parameters of every I/O
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• GrIOt creates a directed graph

• One node contains one call stack and possibly a fixed number of previous call stacks.

• An edge from node A to node B is created if an I/O with call stack B was made right after an I/O with call 

stack A.

Contribution
Modeling with GrIOt
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Contribution
Modeling with GrIOt

• In this example, the next call stack after A depends on the call stack right before A. The graph fails to capture that. 

AAA BB

C

A

C

A

Creation of a GrIOt graph from an I/O call stack sequence
1 node = 1 call stack

?
B Cor
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Contribution
Modeling with GrIOt

• Adding more call stacks to every node makes the graphs bigger and enables potentially better predictions

Creation of a GrIOt graph from an I/O call stack sequence
1 node = 1 call stack + 1 previous call stack

AA BA

AC

? AB

CA

BA
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In order to make a prediction, 3 possibilities:

• If the node has no outgoing edge, we predict the I/O of the last node will repeat itself in a sequential way.

• If the node has a single outgoing edge, we predict the next I/O will be the one of the edge.

• If there is more than one edge a heuristic such as MRU and MFU is used to select an edge to follow.

Contribution
Predicting with GrIOt

B

C

A

Predicting:

C

B

C

A

Predicting:

A

B

C

A

Predicting:

B Cor

(sequential heuristic)

(predicting I/O parameters from the call stack)

(predicting I/O parameters from the call stack)
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• 2 real world HPC applications, NAMD and LAMMPS. 1 synthetic benchmark, IOR.

• GrIOt was implemented in C (tracer) and Python (modeling and prediction)

• Code will be available on github for reproducibility

• 2 sets of experiments in order to:
• Evaluate different configurations of GrIOt
• Compare GrIOt to state-of-the-art: prediction accuracy, overhead, memory footprint

Evaluation
Methodology
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Evaluation
Results

Model size as a function of context size Next I/O call stack prediction accuracy as a 
function of context size

→When context size goes up, precision and model size are going up too
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Evaluation
Results

Next I/O call stack prediction accuracy

Model size

Modelisation and prediction overhead

→GrIOt offers similar or better predicting capabilities
than state of the art with lower overhead and model size.
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• Context: Multiple prefetching approaches, amongst which the grey-box approach using I/O call stacks.

• Problem statement: How to predict I/O for prefetch for both deterministic and non-deterministic I/Os. 

• Contribution: We presented GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch
• I/O and call stack interception
• Modeling with variable-size context
• Predicting using heuristics such as MRU and MFU

• Results: GrIOt offers similar or better results than the state of the art, while keeping a low overhead and 
memory footprint.

Conclusion and Future Work
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Future work will focus on:

• Creating a prefetcher based on GrIOt

• MPI-IO compatibility

• Federating GrIOt models

• Experimenting with per-file, per-open, and per-open-callstack models rather than per-process models

• Reducing the overall overhead

Conclusion and Future Work
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• Context: Multiple prefetching approaches, amongst which the grey-box approach using I/O call stacks.

• Problem statement: How to predict I/O for prefetch for both deterministic and non-deterministic I/Os. 

• Contribution: We presented GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch
• I/O and call stack interception
• Modeling with variable-size context
• Predicting using heuristics such as MRU and MFU

• Results: GrIOt offers similar or better results than the state of the art, while keeping a low overhead and 
memory footprint.

Thank you! Contact me at louis-marie.nicolas@eviden.com

Conclusion and Future Work

mailto:louis-marie.nicolas@eviden.com
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