
GrIOt: Graph-based Modeling of HPC Application
I/O Call Stacks for Predictive Prefetch

Louis-Marie Nicolas, PhD student, ENSTA Bretagne Lab-STICC and Eviden BDS R&D Data Management.

Salim Mimouni, Eviden BDS R&D Data Management, Grenoble, France

Philippe Couvée, Eviden BDS R&D Data Management , Grenoble, France

Jalil Boukhobza, PhD Advisor, ENSTA Bretagne, Lab-STICC, CNRS, UMR 6285, Brest, France

5/13/2024 1



5/13/2024 2

Context
01

State of the art
02

Problem Statement
03

Contribution
04

Evaluation
05

Conclusion and Future 
Work

06

Outline



Comparison of memory technologies used in HPC1

Context

(1) Lüttgau, Jakob, et al. "Survey of storage systems for high-performance computing." Supercomputing Frontiers and Innovations 5.1 (2018).

• There is a gap in performance between volatile memory 
and storage:

• Parallel File Systems are used to increase 
throughput, but they can’t help with the latency

• Heterogenous storage systems are used to combine 
price and performance, but they require adapted 
data placement policies

• In data placement policies, “prefetching” is moving 
data that will be used in the near future from slower 
to faster storage, increasing the I/O performance

• We focus on the predictive prefetching of data directly into compute nodes.

11/12/2023



5/13/2024 4

Context

• One prerequisite to predictive prefetch is the knowledge on an application future I/O behavior.

• Three main approaches:

➢ White-box

• Access and/or modification of an application source code.

• Adding hints or prefetching primitives to the application code

➢ Black-box

• Intercepting I/Os.

• Pattern matching, probabilistic models

➢ Gray-Box

• Intercepting I/Os call stacks. Extracting knowledge about an

application I/O structure using I/O call stacks.

Source 
code

Application LibC / POSIX / …Tracer

I/Os parameters

Application LibC / POSIX / …Tracer

I/Os parameters
and call stacks



5/13/2024 5

• State of the art Omnisc’IO1 encodes the I/O call stack sequence through the compression algorithm 
StarSequitur.

+ The model encodes losslessly the original sequence of I/O.
- It grows in size and complexity when I/Os are not fully deterministic
- It does not include probabilities or heuristics

State of the art

(1) Dorier, Matthieu, et al. "Omnisc'IO: a grammar-based approach to spatial and temporal I/O patterns prediction." SC'14. IEEE, 2014.



5/13/2024 6

How to model the I/O structure of applications with both deterministic and non-deterministic I/O from I/O call 
stacks (grey-box) and use this model to make I/O predictions for efficient prefetch ?

Problem Statement

A directed graph of call stacks:

• Has a bounded size, because an application source code has a 
limited number of different I/O call stacks

• Can support probabilistic behavior by adding metadata to the edges

We present GrIOt, a Graph-based Modeling of I/O call stacks for Predictive 
Prefetch.



5/13/2024 7

Contribution
GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch

Next node prediction
= I/O call stacks prediction
= I/O parameters prediction



5/13/2024 8

Contribution
Tracing I/O and call stacks

• Created of a simple tracer using LD_PRELOAD. Support for standard 
POSIX / libC I/O functions that are dynamically linked.

• Obtain the (relative) call stack and I/O parameters of every I/O



5/13/2024 9

• GrIOt creates a directed graph

• One node contains one call stack and possibly a fixed number of previous call stacks.

• An edge from node A to node B is created if an I/O with call stack B was made right after an I/O with call 

stack A.

Contribution
Modeling with GrIOt



5/13/2024 10

Contribution
Modeling with GrIOt

• In this example, the next call stack after A depends on the call stack right before A. The graph fails to capture that. 

AAA BB

C

A

C

A

Creation of a GrIOt graph from an I/O call stack sequence
1 node = 1 call stack

?
B Cor



5/13/2024 11

Contribution
Modeling with GrIOt

• Adding more call stacks to every node makes the graphs bigger and enables potentially better predictions

Creation of a GrIOt graph from an I/O call stack sequence
1 node = 1 call stack + 1 previous call stack

AA BA

AC

? AB

CA

BA



5/13/2024 12

In order to make a prediction, 3 possibilities:

• If the node has no outgoing edge, we predict the I/O of the last node will repeat itself in a sequential way.

• If the node has a single outgoing edge, we predict the next I/O will be the one of the edge.

• If there is more than one edge a heuristic such as MRU and MFU is used to select an edge to follow.

Contribution
Predicting with GrIOt

B

C

A

Predicting:

C

B

C

A

Predicting:

A

B

C

A

Predicting:

B Cor

(sequential heuristic)

(predicting I/O parameters from the call stack)

(predicting I/O parameters from the call stack)



5/13/2024 13

• 2 real world HPC applications, NAMD and LAMMPS. 1 synthetic benchmark, IOR.

• GrIOt was implemented in C (tracer) and Python (modeling and prediction)

• Code will be available on github for reproducibility

• 2 sets of experiments in order to:
• Evaluate different configurations of GrIOt
• Compare GrIOt to state-of-the-art: prediction accuracy, overhead, memory footprint

Evaluation
Methodology



5/13/2024 14

Evaluation
Results

Model size as a function of context size Next I/O call stack prediction accuracy as a 
function of context size

→When context size goes up, precision and model size are going up too



5/13/2024 16

Evaluation
Results

Next I/O call stack prediction accuracy

Model size

Modelisation and prediction overhead

→GrIOt offers similar or better predicting capabilities
than state of the art with lower overhead and model size.



5/13/2024 17

• Context: Multiple prefetching approaches, amongst which the grey-box approach using I/O call stacks.

• Problem statement: How to predict I/O for prefetch for both deterministic and non-deterministic I/Os. 

• Contribution: We presented GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch
• I/O and call stack interception
• Modeling with variable-size context
• Predicting using heuristics such as MRU and MFU

• Results: GrIOt offers similar or better results than the state of the art, while keeping a low overhead and 
memory footprint.

Conclusion and Future Work



5/13/2024 18

Future work will focus on:

• Creating a prefetcher based on GrIOt

• MPI-IO compatibility

• Federating GrIOt models

• Experimenting with per-file, per-open, and per-open-callstack models rather than per-process models

• Reducing the overall overhead

Conclusion and Future Work



5/13/2024 19

• Context: Multiple prefetching approaches, amongst which the grey-box approach using I/O call stacks.

• Problem statement: How to predict I/O for prefetch for both deterministic and non-deterministic I/Os. 

• Contribution: We presented GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch
• I/O and call stack interception
• Modeling with variable-size context
• Predicting using heuristics such as MRU and MFU

• Results: GrIOt offers similar or better results than the state of the art, while keeping a low overhead and 
memory footprint.

Thank you! Contact me at louis-marie.nicolas@eviden.com

Conclusion and Future Work

mailto:louis-marie.nicolas@eviden.com

	Diapositive 1 GrIOt: Graph-based Modeling of HPC Application I/O Call Stacks for Predictive Prefetch
	Diapositive 2 Outline
	Diapositive 3 Context
	Diapositive 4 Context
	Diapositive 5 State of the art
	Diapositive 6 Problem Statement
	Diapositive 7 Contribution GrIOt, a Graph-based Modeling of I/O call stacks for Predictive Prefetch
	Diapositive 8 Contribution Tracing I/O and call stacks
	Diapositive 9 Contribution Modeling with GrIOt
	Diapositive 10
	Diapositive 11
	Diapositive 12
	Diapositive 13 Evaluation Methodology
	Diapositive 14 Evaluation Results
	Diapositive 16 Evaluation Results
	Diapositive 17 Conclusion and Future Work
	Diapositive 18 Conclusion and Future Work
	Diapositive 19 Conclusion and Future Work

