
Research on HPC I/O in the Context of
the PEPR NumPEx Project

Francieli Boito
Associate professor @ University of Bordeaux

Researcher @ LaBRI and Inria (TADaaM team)

Per3S Workshop, May 2024

PC3 - Exa-DoST (Data-oriented Software and Tools for the Exascale)
Leaders: Gabriel Antoniu (Inria) and Julien Bigot (MdlS)

NumPEx
Exascale computing

3

Data at exascale: a challenge in hardware

• Increasing gap between compute and
I/O performance on large-scale
systems

• Ratio of I/O to computing power divided
by ~10 over the last 10 years on the top 3
supercomputers

• … and data deluge!
• At NERSC, data volume x41 in 10 years

• New storage tiers and advanced
architectures to try to mitigate this
increasing bottleneck

• More complex on-node memory layout
• Emerging complex applications and

workflows have to adapt

Compute node
Compute node w/ node-local storage
[Network/PCIe]-attached storage
Burst-buffer / Dedicated nodes
Gateway nodes / IO forwarding nodes
Flash-based PFS / Short-term
HDD-based PFS / [Medium/long]-term

Trend in storage technologies available on extreme-scale systems

NumPEx
Exascale computing

4

Our ambition

Approach:

• Research on data-oriented tools for HPC
• Transverse, re-usable tools
• Usable in production at exascale

⇒ Exa-DoST will produce:

• New approaches to handle the data challenge at exascale
• Transverse libraries & tools that implement these approaches

Validated in illustrators at full scale
Fully

open-source

Fully
application

agnostic

Fill the gaps in the existing
software stack designed by

previous projects
(e.g. ECP)

Take into account
French & European

specificities

Ensure French &
European needs are
taken into account in

roadmaps

NumPEx
Exascale computing

5

Work Packages in Exa-DoST

WP1: Exascale
I/O and storage

WP2: Exascale
in-situ data
processing

WP5: Management, dissemination and training

WP3: Exascale
ML-based data

analytics

WP4: Shared building blocks
& integrated illustrators

NumPEx
Exascale computing

6

Work Packages in Exa-DoST

WP1: Exascale
I/O and storage

WP2: Exascale
in-situ data
processing

WP5: Management, dissemination and training

WP3: Exascale
ML-based data

analytics

WP4: Shared building blocks
& integrated illustrators

7

WP Objectives

Optimize the I/O performance of applications and
workflows, and leverage emerging storage technologies

● Scale up modern I/O and data storage methods and tools

● Support the I/O and storage requirements of complex

simulation/analytics/AI workflows running on hybrid HPC

(+cloud, +edge) systems

● Develop and integrate new output formats for

checkpoint/restart and for scientific analysis

8

Participants

WP co-leaders: Francieli Boito (University of Bordeaux) and

François Tessier (Inria Rennes)

NumPEx
Exascale computing

9

WP1: Exascale I/O and storage

• [T1.1] What applications benefit from each solution?

• In what conditions?

• What are the problems (concurrent access, resource arbitration)?

• [T1.2] How can we detect the best strategy for an application?

• [T1.4],[T1.5] How to manage resources and tune the system for applications?

• [T1.6] How to represent applications’ data? (Advanced data models)

• [T1.3],[T1.7] How to integrate these solutions in a software stack?

Scheduling Distributed I/O
Resources in HPC Systems
Alexis Bandet, Francieli Boito, Guillaume Pallez

accepted for publication at Euro-Par 2024
available at https://inria.hal.science/hal-04394004

https://inria.hal.science/hal-04394004

The problem of I/O in HPC

● HPC jobs are usually allocated exclusive

compute resources

● The I/O infrastructure is shared

○ Variability: I/O performance depends on what others are doing

○ Contention: lower overall I/O performance

○ Lower utilisation: compute resources are usually “wasted” while waiting for I/O

Processing
nodes

I/O nodes Parallel File
System

Motivation
● The number of I/O nodes is usually static (similar for OSTs)

○ N compute nodes per I/O node, it depends on the placement

○ But it has a strong impact on performance

Graph from (Bez, Boito et al. PDSW 2020)

Scheduling of I/O resources in two steps
● Allocation = how many resources?

● Placement = which resources?

● Allocation:

○ Random and Static: baselines, +MCKP from previous work (Bez et al. IPDPS 2021)

○ NSYSA: each application receives the number that minimizes its I/O load

○ BBA: each application receives the number for its best I/O performance

○ TA: improve on NSYSA’s solution by giving more resources to applications while respecting a

maximum I/O load

● Placement:

○ Random: baseline

○ GNC: balance the number of

applications per I/O resource

○ GC: balance the I/O load per

I/O resource

Algorithms

Results

Results with partial (imprecise) information
● BBA and TA are the best allocation policies

○ but as input they require the “profile” of the application

○ profile = performance as a function of number of I/O resources

● What if we just know the general shape?

○ Results get < 1% worse!

Ongoing work: classifying
application behavior

(aka call for collaborations)

Perspectives

● First, to identify classes of applications regarding their behavior

○ example: the “I/O profile” from the work on scheduling of I/O resources

○ multi-dimensional classification

● Then, to identify what metrics allow for classification at run time
○ how fast can we do it?

○ ideally, very little overhead

● A challenge: temporal I/O behavior

○ publicly available traces are rare to non-existent

Capturing Periodic I/O Using
Frequency Techniques

Ahmad Tarraf, Alexis Bandet, Francieli Boito,
Guillaume Pallez, Felix Wolf

IPDPS 2024
available at

https://inria.hal.science/hal-04382142v1/

https://inria.hal.science/hal-04382142v1/

Studying I/O periodicity
● A first step: the time between the start of consecutive I/O phases

○ and a measure of how much we trust that number (not all applications are periodic)

● it is actually much harder than it sounds…

○ an I/O phase = multiple I/O requests

○ where does it start and where does it end?

○ not all I/O is interesting

FTIO: frequency techniques for I/O

Collaboration between Inria Bordeaux and TU Darmstadt

● Treat I/O bandwidth over time as a signal

○ Apply discrete Fourier transform (DFT) + z-score to find the dominant frequency(ies)

● It can be done online, working on a time window of recent activity

● Measures of periodicity: the standard deviation of the amount of transferred data

(and time spent on I/O) per DFT-identified period

FTIO: frequency techniques for I/O

IOR on
9216
ranks

FTIO: frequency techniques for I/O

confidence < 60%

the more to
the right =
the “less
periodic”

● Stretch: for each application, how much it was slowed-down by others compared to running by itself

(minimum of 1, meaning no slow down). We take the geometric mean of the 16 applications.

● IO-Slowdown: for each application, how much slower its I/O was compared to running by itself (minimum of

1, meaning no slow down). We take the geometric mean of the 16 applications.

● Utilization: how much of the system time was spent on compute (NOT doing I/O or waiting for I/O), so

between 0 and 1 (1 means no I/O at all).

The lower, the better The higher, the better
Priorities are
hardcoded

We're hiring!

Research on HPC I/O in the Context of
the PEPR NumPEx Project

Francieli Boito
francieli.zanon-boito@u-bordeaux.fr

mailto:francieli.zanon-boito@u-bordeaux.fr

