Research on HPC I/O in the Context of the PEPR NumPEx Project

Francieli Boito

Associate professor @ University of Bordeaux Researcher @ LaBRI and Inria (TADaaM team)

Per3S Workshop, May 2024

PC3 - Exa-DoST (Data-oriented Software and Tools for the Exascale) Leaders: Gabriel Antoniu (Inria) and Julien Bigot (MdIS)

Data at exascale: a challenge in hardware

- Increasing gap between compute and I/O performance on large-scale systems
 - Ratio of I/O to computing power divided by ~10 over the last 10 years on the top 3 supercomputers
- ... and data deluge!
 - At NERSC, data volume x41 in 10 years
- New storage tiers and advanced architectures to try to mitigate this increasing bottleneck
 - More complex on-node memory layout
 - Emerging complex applications and workflows have to adapt

Trend in storage technologies available on extreme-scale systems

Our ambition

Approach:

- Research on data-oriented tools for HPC
- Transverse, re-usable tools
- Usable in production at exascale
- \Rightarrow Exa-DoST will produce:
- New approaches to handle the data challenge at exascale
- Transverse libraries & tools that implement these approaches
- Validated in illustrators at full scale

Fill the gaps in the existing software stack designed by previous projects (e.g. ECP)

Take into account French & European specificities

Ensure French & European needs are taken into account in roadmaps

Fully open-source

FRANCE

Work Packages in Exa-DoST

WP5: Management, dissemination and training

Work Packages in Exa-DoST

WP5: Management, dissemination and training

WP Objectives

Optimize the I/O performance of applications and workflows, and leverage emerging storage technologies

- Scale up modern I/O and data storage methods and tools
- Support the I/O and storage requirements of complex simulation/analytics/AI workflows running on hybrid HPC (+cloud, +edge) systems
- Develop and integrate **new output formats** for checkpoint/restart and for scientific analysis

WP co-leaders: Francieli Boito (University of Bordeaux) and

François Tessier (Inria Rennes)

WP1: Exascale I/O and storage

- [T1.1] What applications benefit from each solution?
 - In what conditions?
 - What are the problems (concurrent access, resource arbitration)?
- **[T1.2]** How can we detect the best strategy for an application?
- **[T1.4], [T1.5]** How to manage resources and tune the system for applications?
- **[T1.6]** How to represent applications' data? (Advanced data models)
- **[T1.3], [T1.7]** How to integrate these solutions in a software stack?

Scheduling Distributed I/O Resources in HPC Systems

Alexis Bandet, Francieli Boito, Guillaume Pallez

accepted for publication at Euro-Par 2024 available at <u>https://inria.hal.science/hal-04394004</u>

The problem of I/O in HPC

HPC jobs are usually allocated exclusive

compute resources

- The I/O infrastructure is shared
 - Variability: I/O performance depends on what others are doing
 - <u>Contention</u>: lower overall I/O performance
 - <u>Lower utilisation</u>: compute resources are usually "wasted" while waiting for I/O

Motivation

- The number of I/O nodes is usually static (similar for OSTs)
 - N compute nodes per I/O node, it depends on the placement
 - But it has a strong impact on performance

Scheduling of <u>I/O resources</u> in two steps

- Allocation = how many resources?
- **Placement** = which resources?

Algorithms

- Allocation:
 - Random and Static: baselines, +MCKP from previous work (Bez et al. IPDPS 2021)
 - NSYSA: each application receives the number that minimizes its I/O load
 - BBA: each application receives the number for its best I/O performance
 - TA: improve on NSYSA's solution by giving more resources to applications while respecting a maximum I/O load
- Placement:
 - Random: baseline
 - GNC: balance the number of applications per I/O resource
 - GC: balance the I/O load per
 I/O resource

Table 2: Heuristics and their input

		Allocation					Placement		
		Random	Static	BBA	NSYSA	TA	RandP	GNC	GC
Easy	Q_j		x			x			
Medium	$V_{\rm io}^j$				x	х			x
	$T^j_{ m cpu}$				x	x			x
	n_{perf}			х					
Hard	b_j				х	х			х

Results

Results with partial (imprecise) information

- BBA and TA are the best allocation policies
 - but as input they require the "profile" of the application
 - profile = performance as a function of number of I/O resources
- What if we just know the general shape?
 - Results get < 1% worse!

Ongoing work: classifying application behavior

(aka call for collaborations)

Perspectives

- First, to identify **classes of applications** regarding their behavior
 - example: the "I/O profile" from the work on scheduling of I/O resources
 - multi-dimensional classification
- Then, to identify what metrics allow for classification at run time
 - how fast can we do it?
 - ideally, very little overhead
- A challenge: temporal I/O behavior
 - publicly available traces are rare to non-existent

Capturing Periodic I/O Using Frequency Techniques

Ahmad Tarraf, Alexis Bandet, Francieli Boito, Guillaume Pallez, Felix Wolf

IPDPS 2024

available at <u>https://inria.hal.science/hal-04382142v1/</u> λ Γλλ μ

malleable data solutions for HPC

Studying I/O periodicity

- A first step: the time between the start of consecutive I/O phases
 - and a measure of how much we trust that number (not all applications are periodic)
- it is actually <u>much harder than it sounds</u>...
 - an I/O phase = multiple I/O requests
 - where does it start and where does it end?
 - not all I/O is interesting

FTIO: frequency techniques for I/O

Collaboration between Inria Bordeaux and TU Darmstadt

- Treat I/O bandwidth over time as a signal
 - Apply discrete Fourier transform (DFT) + z-score to find the dominant frequency(ies)
- It can be done online, working on a time window of recent activity
- Measures of periodicity: the standard deviation of the amount of transferred data (and time spent on I/O) per DFT-identified period

FTIO: frequency techniques for I/O

FTIO: frequency techniques for I/O

confidence < 60%

- **Stretch**: for each application, how much it was slowed-down by others compared to running by itself (minimum of 1, meaning no slow down). We take the geometric mean of the 16 applications.
- IO-Slowdown: for each application, how much slower its I/O was compared to running by itself (minimum of 1, meaning no slow down). We take the geometric mean of the 16 applications.
- Utilization: how much of the system time was spent on compute (NOT doing I/O or waiting for I/O), so between 0 and 1 (1 means no I/O at all).

We're hiring!

Research on HPC I/O in the Context of the PEPR NumPEx Project

Francieli Boito

francieli.zanon-boito@u-bordeaux.fr

