
Why globally re-shuffle? Revisiting data shuffling
in large scale Deep Learning

Per3S 2023

François Trahay

Télécom SudParis, Institut Polytechnique de Paris

Original paper:
T. Truong, F. Trahay, J. Domke, A. Drozd, E. Vatai, J. Liao​, M. Wahib, B. Gerofi.
Why Globally Re-shuffle? Revisiting Data Shuffling in Large Scale Deep Learning. IPDPS 2022.

2/ 15

Stochastic Gradient Descent

• In each training iteration:
• Select mini-batch size samples randomly
• Evaluate mini-batch
• Compute gradients
• Update model

3/ 15

Large scale machine learning
 AI data set sizes are increasing rapidly

• CIFAR100: 170 MB
• ImageNet: 140 GB
• ImageNet21K: 1.8 TB
• OpenCatalyst: 1.1TB

→ may not fit in memory/on disk

 AI models size increase too
• ResNet18: 11 M parameters
• ResNet50: 23 M parameters
• GPT3: 175B parameters
• → training time increases (eg. ResNet18/ImageNet: 58h, ResNet50/ImageNet: 336 h 1)

→ fitting the model in memory requires dozens of GB of RAM

 Need for distributed Stochastic Gradient Descent (SGD)
• To speed up training
• To fit the data set in memory

1 Y. You, Z. Zhang, C.J. Hsieh, J. Demmel, & K. Keutzer. Imagenet training in minutes. In ICPP 2018

4/ 15

Distributed SGD

• In each training iteration, each worker:
• Selects local mini-batch size samples randomly
• Evaluates its local mini-batch
• Computes gradients
• AllReduce to average gradients across workers
• Updates model

5/ 15

First tier storage on the TOP500 vs. DL data sets

 Three patterns:
• No local storage
• Compute node local SSD (dark blue in Fig 1)

• Network attached flash (light blue in Fig 1)

 Where should I store the data set ?
• On local SSDs
• Access data from the parallel file system
• Split data set among workers and sample locally

Fig.1 Dedicated node local storage on the fifteen fastest supercomputers from the
TOP500 list (21’ Jun) vs. DL data set sizes

6/ 15

Accessing the dataset from a parallel filesystem

 I/O performance measured during training
• Experiments on ABCI supercomputer
• ResNet-50 on ImageNet-1k running on 64 nodes (256 GPUs)

- Local: each worker reads from its local SSD (dataset is duplicated)
- Parallel: workers read from the parallel filesystem (Lustre)

• I/O logged with Darshan DXT

 Observations
• Local SSD:

- Bursts of read at each epoch
- Read throughput is stable (8GB/s)

• Parallel filesystem:
- Read throughput is unstable (avg: 3GB/s)
- Concurrent random read significantly degrade the IO performance

• → training from the local SSD is ~70% faster than from the PFS

 Where should I store the data set ?
• On local SSDs
• Access data from the parallel file system
• Split data set among workers and sample locally

Parallel filesystem

Local SSD

7/ 15

Local shuffling strategy

• In each training iteration, each worker:
• Selects local mini-batch size samples randomly from local samples
• Evaluates its local mini-batch
• Computes gradients
• AllReduce to average gradients across workers
• Updates model

• Each worker trains on a (small) subset of the dataset
→ Fast (local) I/O
→ What is the impact on accuracy of training from a few samples ?

8/ 15

Local-partial shuffling

• Proposal: keeping samples mostly local
– Exchange a portion Q of local samples with another node

● Q=0 → local shuffling
● Q=1 → global shufflling

• Executions steps:
• N samples initially distributed among M workers
• Randomly pick Q x N/M samples (global partition)
• Exchange of samples between random pairs of workers

• Implementation in PyTorch
• Replacement to DistributedSampler()

• To overlap forward and backward paths:
• Use non-blocking MPI calls (i.e., MPI_Isend/recv())

9/ 15

Experiments

• What is the impact of shuffling strategies

– on accuracy ?

– on performance ?

10/ 15

Evaluation Platforms

• ABCI (#16 on Top500)
• 1,088 compute nodes (CN)
• 2 Intel Xeon Gold + 4 NVIDIA V100 per node
• Infiniband EDR
• 1.6 TB SSD local per CN
• 4 workers per CN

• Fugaku (#1 on Top500)
• 158,976 CNs
• Fujitsu A64FX CPU (48 cores, 4 NUMA domains) per node
• 1.6 TB SSD shared among 16 nodes
• 2 workers per CN

11/ 15

Models, Data Sets and Configurations

• Evaluated models/datasets
• ResNet50 with ImageNet-1k
• DenseNet with ImageNet-1k
• WideResNet-28-10 with CIFAR100
• ResNet50 (pretrained) with StanfordCar dataset

• Pre-trained, transfer learning scenario

• ResNet50 with ImageNet-50 (ABCI)
• ImageNet-50 is a subset of ImageNet-1K with only 50 classes

• Inception-v4 with CIFAR100 (ABCI)
• ImageNet-21k with Resnet50
• DeepCAM

• Evaluated configuration
• Local sampling
• Global sampling
• Partial-0.x: local-partial shuffling with an x% exchange

12/ 15

Local Shuffling is sufficient

• Both local shuffling and global achieve the same validation accuracy
• Local partial shuffling provides almost identical accuracy trajectory with global sampling

 → local-partial shuffling could reduce the run time

13/ 15

Partial Local Shuffling can improve Accuracy

• For some models/datasets, local shuffling degrades the accuracy
• Partial local shuffling maintains the same accuracy as global shuffling

• Partial local shuffling reduces the need for local storage
– Partial-0.01 : Each of the 4096 workers store only ~0.03% of the data

set locally

→ Achieving good accuracy for datasets that don’t fit on the local storage

ResNet50 with ImagetNet-1K on Fugaku

14/ 15

Performance analysis

• Resnet50 on ImageNet1k:
• Good scalability for up to 1k GPUs, performance drop on 2k
• Still significant improvement compared to global out of PFS

• Partial-local shuffling
• Cost of sample exchange increases as Q increases

• Global shuffling
• Cost of I/O is high
• High variability due to I/O contention

validation accuracy

15/ 15

Summary and Takeaways

• Global shuffling in distributed DL has severe I/O implications

• Impact of randomization on accuracy is unclear

• Only significant for large number of workers ?
• Built a library that enables experimentation with the proposed partial local shuffling

• Often local shuffling provides similar accuracy as global
• In some cases partial shuffling can improve accuracy and approximate that of global shuffling (with the fraction of the cost of

running out of PFS)

• Future work:
• Redundant data storage to avoid communication in partial shuffling
• Cost model for dynamically determining the right fraction (Q) to shuffle
• More experiments, more datasets (e.g., OpenCatalyst)
• (ongoing) select the important samples to exchange → almost local shuffling with high accuracy

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	I/O cost of global shuffling on Parallel filesystem vs. SSDs (A
	Diapo 7
	Design and Implementation
	Evaluation Platforms
	Diapo 10
	Models, Data Sets and Configurations
	Local Shuffling Sufficient
	Partial Local Shuffling Improves Accuracy
	Performance and scalability of partial shuffling
	Summary and Takeaways

