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Stochastic Gradient Descent

* In each training iteration:
* Select mini-batch size samples randomly
* Evaluate mini-batch

* Compute gradients
* Update model




Large scale machine learning

Al data set sizes are increasing rapidly
N CIFAR100: 170 MB

° ImageNet: 140 GB

*  ImageNet21K: 1.8 TB

®*  OpenCatalyst: 1.1TB

— may not fit in memory/on disk

Al models size increase too

®*  ResNet18: 11 M parameters

®  ResNet50: 23 M parameters

®*  GPT3: 175B parameters

® > training time increases (eg. ResNet18/ImageNet: 58h, ResNet50/ImageNet: 336 h %)
- fitting the model in memory requires dozens of GB of RAM

Need for distributed Stochastic Gradient Descent (SGD)

To speed up training

To fit the data set in memory
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Distributed SGD

* In each training iteration, each worker:
* Selects local mini-batch size samples randomly
* Evaluates its local mini-batch
* Computes gradients
* AlIReduce to average gradients across workers
* Updates model
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First tier storage on the TOP500 vs. DL data sets

B Three patterns:

No local storage
Compute node local SSD (dark blue in Fig 1)
Network attached flash

B Where should | store the data set ?

Onleeal SSBs
Access data from the parallel file system

Split data set among workers and sample locally
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Fig.1 Dedicated node local storage on the fifteen fastest supercomputers from the
TOP500 list (21’ Jun) vs. DL data set sizes
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Accessing the dataset from a parallel filesystem

1/0 performance measured during training

Experiments on ABCI supercomputer

ResNet-50 on ImageNet-1k running on 64 nodes (256 GPUs)

- Local: each worker reads from its local SSD (dataset is duplicated)
- Parallel: workers read from the parallel filesystem (Lustre)

I/0 logged with Darshan DXT

Observations

Local SSD:

- Bursts of read at each epoch

- Read throughput is stable (8GB/s)

Parallel filesystem:

- Read throughput is unstable (avg: 3GB/s)

- Concurrent random read significantly degrade the 10 performance
— training from the local SSD is ~70% faster than from the PFS

Where should | store the data set ?

Onleeal SSbs
Aceess-datafrom-the parallelHile system

Split data set among workers and sample locally
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In each training iteration, each worker:

Each worker trains on a (small) subset of the dataset
— Fast (local) I/0
— What is the impact on accuracy of training from a few samples ?

Local shuffling strategy

Selects local mini-batch size samples randomly from local samples
Evaluates its local mini-batch

Computes gradients

AllReduce to average gradients across workers

Updates model
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Local-partial shuffling

Proposal: keeping samples mostly local
- Exchange a portion Q of local samples with another node

. Q=0 — local shuffling

. Q=1 — global shufflling I

Executions steps:
¢ N samples initially distributed among M workers
* Randomly pick Q x N/M samples (global partition)

Training code with global shuffling

¢ Exchange of samples between random pairs of workers

train_dataset = ImageFolder(train_dir, transformations)
train_sampler = DistributedSampler(train_dataset, size, rank)
train_loader = DataLoader(train_dataset, batch_size=b, train_sampler)

Implementation in PyTorch

Training code with (Partial) Local Shuffling

e  Replacement to DistributedSampler()

To overlap forward and backward paths:
*  Use non-blocking MPI calls (i.e., MPI_Isend/recv())

train_dataset = PLS.ImageFolder(train_dir, class_file, transformations)
train_sampler = DistributedSampler(train_dataset, size, rank=rank)
train_loader = DatalLoader(train_dataset, batch_size=b, train_sampler)
scheduler = PLS.Scheduler(train_dataset, batch_size=b, fraction=Q)

train(epoch):
scheduler.scheduling(epoch)
...... # Training loop here
send_req, recv_req = scheduler.communicate() # Non-blocking exchange
scheduler.synchronize(send_req, recv_req) # Wait to finish exc
scheduler.clean_local_storage() # Remove exchanged samples on the storage

Fig. 3: Global vs. partial local sampling in PyTorch.
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Experiments

 What is the impact of shuffling strategies
- onaccuracy ?

- on performance ?
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Evaluation Platforms

ABCI (#16 on Top500)
e 1,088 compute nodes (CN) .
¢ 2 Intel Xeon Gold + 4 NVIDIA V100 per node =l 4\\
 Infiniband EDR _Li_ 4l
e 1.6 TBSSD local per CN
¢ 4 workers per CN

'£ e PN

s 5
L]
s

Fugaku (#1 on Top500)

e 158,976 CNs

*  Fujitsu A64FX CPU (48 cores, 4 NUMA domains) per node
e 1.6 TB SSD shared among 16 nodes

e 2 workers per CN
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Models, Data Sets and Configurations

* Evaluated models/datasets
*  ResNet50 with ImageNet-1k
* DenseNet with ImageNet-1k
*  WideResNet-28-10 with CIFAR100

* ResNet50 (pretrained) with StanfordCar dataset TABLE I: Datasets and Models Used in Experiments (*)Trained
*  Pre-trained, transfer learning scenario on a subset of the original dataset. (**) Use pre-trained model.
*  ResNet50 with ImageNet-50 (ABCI) Model Dataset #Samples Size
*  ImageNet-50 is a subset of ImageNet-1K with only 50 classes Resnet50 [26] ImageNet-1K [9] 1.2M ~ 140GB
. . Densenet161 [27] ’
Inception-v4 with CIFAR100 (ABCI) Resnet50 [26) ImageNet-50(%) [9] | ~65K | ~ 2GB
* ImageNet-21k with Resnet50 :V{deReSNf-if)-m [28] CIFAR-100 [29] SOK ~160 MB
¢ DeepCAM nceptionv4 [30] ‘
Resnet50 (¥*) [26] Standford Cars [31] | 8144 |~ 934 MB
. Evaluated conﬁguraﬁon Resnet50 [26] ImageNet-21K(*) [9] | ~ 9.3M ~1.1 TB
DeepCAM [26] DeepCAM [1] ~ 12K | ~82 1B

* Local sampling
* Global sampling

* Partial-0.x: local-partial shuffling with an x% exchange
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(b) DenseNet with ImageNet-1K

» Both local shuffling and global achieve the same validation accuracy
 Local partial shuffling provides almost identical accuracy trajectory with global sampling
= local-partial shuffling could reduce the run time
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Validation accuracy
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ResNet50 with ImagetNet-1K on Fugaku

— Achieving good accuracy for datasets that don't fit on the local storage
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Resnet50 on ImageNet1k:

Performance analysis

* Good scalability for up to 1k GPUs, performance drop on 2k
* Still significant improvement compared to global out of PFS

Partial-local shuffling

* Cost of sample exchange increases as Q increases

Global shuffling
* Cost of I/Ois high

* High variability due to I/O contention
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Summary and Takeaways

* Global shuffling in distributed DL has severe 1/0 implications

* Impact of randomization on accuracy is unclear

*  Only significant for large number of workers ?

* Built a library that enables experimentation with the proposed partial local shuffling
* Often local shuffling provides similar accuracy as global

* In some cases partial shuffling can improve accuracy and approximate that of global shuffling (with the fraction of the cost of
running out of PFS)

* Future work:
* Redundant data storage to avoid communication in partial shuffling
* Cost model for dynamically determining the right fraction (Q) to shuffle
* More experiments, more datasets (e.g., OpenCatalyst)
* (ongoing) select the important samples to exchange — almost local shuffling with high accuracy
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