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This talk in a nutshell
We discuss several widespread pitfalls of benchmarking persistent tree data 
structures on flash solid-state drives (SSD) and their impact.

– Non-representative and non-reproducible results
– Suboptimal deployments
– Biased evaluations

We analyze the low-level causes of the pitfalls and suggest solutions

Improve understanding and enable more rigorous benchmarking of the 
performance of tree data structures on flash SSDs
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Tree data structures Flash SSDs

§ Fundamental building block of 
many production systems

§ Efficient indexing of large amount 
of data 

§ Medium of choice to store massive 
data sets in data centers

§ Persistency with excellent 
performance / cost tradeoff
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Benchmarking tree data structures on 
flash SSDs is challenging
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Tree data structures: complex internal operations

B+treeLSM-tree
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Tree data structures: complex internal operations

LSM-tree B+tree

Application-level write-amplification:
Bytes written to disk by tree structure

Bytes written by user 
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Flash SSDs: complex black boxes

§ No in-place updates:
– Update value in page P à write new value to clean block and invalidate P
– Pages cannot be erased individually à read large blocks and relocate valid pages

§ Error detection, wear levelling, data refresh, metadata IO, journaling, …
§ Tiering / multi-bit mode
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Flash SSDs: complex black boxes

§ No in-place updates:
– Update value in page P à write new value to clean block and invalidate P
– Pages cannot be erased individually à read large blocks and relocate valid pages

§ Error detection, wear levelling, data refresh, metadata IO, journaling, …
§ Tiering / multi-bit mode

Device-level write-amplification:

Bytes written to flash
Bytes written to SSD by tree
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Six common benchmarking pitfalls
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Pitfalls                                             Consequences

1. Running short tests

2. Not analyzing write amplification

3. Ignoring the tree’s extra capacity requirements

4. Testing with a singe data-set size  

5. Ignoring the initial condition of the SSD

6. Testing with a single type of SSD

Obtain non-representative,  
non-reproducible results

Cannot generalize results

Suboptimal deployment and 
cost/performance analysis
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Experimental setup

§ RocksDB (LSM tree) and WiredTiger (B+tree)

§ 400 GB Intel p3600 enterprise-class NVMe SSD

§ 200 GB data-set loaded before the start of each test

§ 100% write workload to stress the internal operations of the trees and the garbage 

collection dynamics of the SSD (random put operations, Key=8B / Value=128B)

§ <100 MB of RAM cache for the systems
– Data does not fit into memory, operations served from disk
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Pitfall 1: running short tests
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Pitfall 1: running short tests
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Throughput varies over time:
Reporting performance of a short test is not 
representative of steady-state performance
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Pitfall 2: not considering write amplification
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Bottom: application (WA-A) and device (WA-D) 
write amplifications. WA-A * WA-D determines device lifetime.
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Pitfall 2: not considering write amplification
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WA-A not sufficient to justify performance variability
WA-D is needed, but is often time neglected
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Pitfall 3: neglecting data-structure’s space overhead
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§ RocksDB’s can index less data
– Overhead of the several LSM levels

§ WiredTiger can be more cost-
efficient for larger datasets that do 
not require very high throughput

Using a single data-set size leads to an incomplete cost analysis
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Pitfall 4: using a single dataset size

§ Larger dataset à lower throughput

– More valid data à more garbage collection

§ Performance advantage of RocksDB

shrinks with larger data sets

– From 3.3X to 1.9X
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Using a single data-set leads to biased evaluations and comparisons
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Pitfall 5: Ignoring the initial condition of the SSD
§ Run similar experiments:

1. Partition → Trim Partition
2. Partition → Trim Partition → Pre-cond
3. Trim SSD → Partition 
4. Trim SSD → Partition → Pre-cond

§ The slight differences result in different
levels of over-provisioning 

§ Performance advantage of RocksDB shrinks when lowering effective OP

– From 3.5X to 1.9X

§ Large change in WA-D and expected lifetime
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Pitfall 6: use a single SSD type

§ SSD 1: Intel p3600           
§ SSD 2: Intel 660p        

1. RocksDB is better on SSD1 
2. WiredTiger is better on SSD2
3. Either can be better than the 

other depending on the SSD!
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Performance results are not directly portable cross-SSDs
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We have a paper…

§ Additional pitfalls

§ More in depth-analysis

§ Guidelines to address the pitfalls

§ More workloads

§ Discussion of related work
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Conclusion

§ Tree data structures on SSDs are first-class citizens in modern 
storage systems

§ Analyzing their performance correctly is hard: complex data structures 
on complex hardware

§ We show experimentally six benchmarking pitfalls that can lead to 
incomplete, wrong or biased performance and cost evaluations

§ We aim to provide better understanding of the performance of these 
systems and guidelines for a more thorough evaluation
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Thank you!

www.zurich.ibm.com/cci

Research topics:

• Cloud storage
• Non-volatile memories
• Accelerators (FPGAs, neuromorphic & 

analog AI)
• Machine learning frameworks
• Archival storage
• HW design


