
Toward a better understanding and
benchmarking of tree data structures
on flash SSDs

Diego Didona, Nikolas Ioannou, Radu Stoica, Kornilios Kourtis
IBM Research - Zurich

Per3S 2022

1

This talk in a nutshell
We discuss several widespread pitfalls of benchmarking persistent tree data
structures on flash solid-state drives (SSD) and their impact.

– Non-representative and non-reproducible results
– Suboptimal deployments
– Biased evaluations

We analyze the low-level causes of the pitfalls and suggest solutions

Improve understanding and enable more rigorous benchmarking of the
performance of tree data structures on flash SSDs

2

Tree data structures Flash SSDs

§ Fundamental building block of
many production systems

§ Efficient indexing of large amount
of data

§ Medium of choice to store massive
data sets in data centers

§ Persistency with excellent
performance / cost tradeoff

3

Benchmarking tree data structures on
flash SSDs is challenging

4

Tree data structures: complex internal operations

B+treeLSM-tree

5

Tree data structures: complex internal operations

LSM-tree B+tree

Application-level write-amplification:
Bytes written to disk by tree structure

Bytes written by user

6

Flash SSDs: complex black boxes

§ No in-place updates:
– Update value in page P à write new value to clean block and invalidate P
– Pages cannot be erased individually à read large blocks and relocate valid pages

§ Error detection, wear levelling, data refresh, metadata IO, journaling, …
§ Tiering / multi-bit mode

7

Flash SSDs: complex black boxes

§ No in-place updates:
– Update value in page P à write new value to clean block and invalidate P
– Pages cannot be erased individually à read large blocks and relocate valid pages

§ Error detection, wear levelling, data refresh, metadata IO, journaling, …
§ Tiering / multi-bit mode

Device-level write-amplification:

Bytes written to flash
Bytes written to SSD by tree

8

Six common benchmarking pitfalls

9

Pitfalls Consequences

1. Running short tests

2. Not analyzing write amplification

3. Ignoring the tree’s extra capacity requirements

4. Testing with a singe data-set size

5. Ignoring the initial condition of the SSD

6. Testing with a single type of SSD

Obtain non-representative,
non-reproducible results

Cannot generalize results

Suboptimal deployment and
cost/performance analysis

10

Experimental setup

§ RocksDB (LSM tree) and WiredTiger (B+tree)

§ 400 GB Intel p3600 enterprise-class NVMe SSD

§ 200 GB data-set loaded before the start of each test

§ 100% write workload to stress the internal operations of the trees and the garbage

collection dynamics of the SSD (random put operations, Key=8B / Value=128B)

§ <100 MB of RAM cache for the systems
– Data does not fit into memory, operations served from disk

11

Pitfall 1: running short tests

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 0

 50

 100

 150

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
WiredTiger

 reads

 0

 5

 10

 15

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
RocksDB

 reads

12

Pitfall 1: running short tests

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 0

 50

 100

 150

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
WiredTiger

 reads

 0

 5

 10

 15

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
RocksDB

 reads

Throughput varies over time:
Reporting performance of a short test is not
representative of steady-state performance

13

Pitfall 2: not considering write amplification

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 0

 50

 100

 150

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
WiredTiger

 reads

 0

 5

 10

 15

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
RocksDB

 reads

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

Bottom: application (WA-A) and device (WA-D)
write amplifications. WA-A * WA-D determines device lifetime.

14

Pitfall 2: not considering write amplification

 0

 0.5

 1

 1.5

 0 30 60 90 120 150 180 210
 0

 50

 100

 150

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
WiredTiger

 reads

 0

 5

 10

 15

 0 30 60 90 120 150 180 210
 0

 100

 200

 300

 400

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Time (min)

Device: writes
RocksDB

 reads

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

 1

 2

 3

 0 30 60 90 120 150 180 210
 0

 5

 10

W
A

-D

W
A

-A

Time (min)

WA-D WA-A

WA-A not sufficient to justify performance variability
WA-D is needed, but is often time neglected

15

Pitfall 3: neglecting data-structure’s space overhead

 0
 20
 40
 60
 80

 100

0.25 0.37 0.5 0.62 0.75 0.88

D
is

k
u
til

iz
a
tio

n
 (

%
)

Dataset size / SSD capacity

4
7

6
1

7
4

8
8

2
9

4
3

5
7

7
1

8
5

9
9

§ RocksDB’s can index less data
– Overhead of the several LSM levels

§ WiredTiger can be more cost-
efficient for larger datasets that do
not require very high throughput

Using a single data-set size leads to an incomplete cost analysis

16

Pitfall 4: using a single dataset size

§ Larger dataset à lower throughput

– More valid data à more garbage collection

§ Performance advantage of RocksDB

shrinks with larger data sets

– From 3.3X to 1.9X

 0

 1

 2

 3

 4

0.25 0.37 0.5 0.62T
h

ro
u

g
h

p
u

t
(K

o
p

s/
s)

Dataset size / disk size

3
.3

2
.2

1
.8

1
.7

1
.0

1
.0

1
.0

0
.9

Using a single data-set leads to biased evaluations and comparisons

17

Pitfall 5: Ignoring the initial condition of the SSD
§ Run similar experiments:

1. Partition → Trim Partition
2. Partition → Trim Partition → Pre-cond
3. Trim SSD → Partition
4. Trim SSD → Partition → Pre-cond

§ The slight differences result in different
levels of over-provisioning

§ Performance advantage of RocksDB shrinks when lowering effective OP

– From 3.5X to 1.9X

§ Large change in WA-D and expected lifetime

18

Pitfall 6: use a single SSD type

§ SSD 1: Intel p3600
§ SSD 2: Intel 660p

1. RocksDB is better on SSD1
2. WiredTiger is better on SSD2
3. Either can be better than the

other depending on the SSD!
 0
 5

 10
 15
 20
 25
 30

SSD1 SSD2 SSD3

T
h
ro

u
g
h
p
u
t
(K

o
p
s/

s)

RocksDB

8
.7

1
.3

2
4
.1

WiredTiger

1
.2 1
.6 2
.9

Performance results are not directly portable cross-SSDs

19

We have a paper…

§ Additional pitfalls

§ More in depth-analysis

§ Guidelines to address the pitfalls

§ More workloads

§ Discussion of related work

20

Conclusion

§ Tree data structures on SSDs are first-class citizens in modern
storage systems

§ Analyzing their performance correctly is hard: complex data structures
on complex hardware

§ We show experimentally six benchmarking pitfalls that can lead to
incomplete, wrong or biased performance and cost evaluations

§ We aim to provide better understanding of the performance of these
systems and guidelines for a more thorough evaluation

21

Thank you!

www.zurich.ibm.com/cci

Research topics:

• Cloud storage
• Non-volatile memories
• Accelerators (FPGAs, neuromorphic &

analog AI)
• Machine learning frameworks
• Archival storage
• HW design

