
Cloud automation and
interfacing to HPC – What

happens with Data ?

Fotis Nikolaidis
Antony Chazapis

Manolis Marazakis
 Angelos Bilas Per3S

2023

2

About this presentation

● Objective:
○ Run Kubernetes applications on HPC infrastructure.

● Agenda
○ Background on Cloud/HPC Convergence.
○ Rootless architecture for deploying Kubernetes as Slurm job.
○ Show-case.
○ Key takeaways.

3

Slurm vs Kubernetes

● Slurm dominates HPC.
○ Specialized in launching MPI jobs at scale.
○ Singularity containers is an option, but requires external management.

● Kubernetes dominates Cloud.
○ Specialized in container management (i.e healing, scaling, replication).
○ Originally designed for DevOps, is now getting traction for repeatable data

science.

4

Convergence of HPC and Cloud-native

Why should I care ?

5

Reasons for Convergence

1. Cloud-User PoV: Scale-out workflows written for Kubernetes.
a. Genomics and Bioinformatics
b. ML Training

2. HPC-user PoV: Exploit Cloud-native Data Science Tools.
a. Combine HPC codes with Cloud-native data analysis → Visualization,

querying, ...
b. Interactive code execution → Jupyter
c. Workflow management → Argo Workflows, Apache Airflow, …

3. HPC-center PoV: Increase utilization of data center.
a. Attract Cloud users

6

Architectures for Convergence

Slurm

Hardware Hardware

Slurm

Hardware

Hardware

Kubernetes

Slurm

Hardware

Kubernetes

Slurm

Kubernetes Kubernetes

Case: Run MPI jobs on Cloud resources. Case: Run Kubernetes on HPC cluster.

Case: Bridge different clusters. Case: Support both, avoid data transfers.

Today’s
Topic!!!

7

Design Goals

Objective: Run K8s workloads within unmodified Slurm
environment.

Requirements:

1. Create ephemeral k8s clusters as user jobs.
2. Support all Kubernetes abstractions, except

privileged.
3. Scale across all nodes of the cluster.
4. Minimal pre-installed software.

Hardware

Kubernetes

Slurm

Run
Kubernetes

On
HPC Cluster

Top-level view

9

Four-step process.

1. Proxy receives Job Request from
Kubernetes.

2. Proxy translates K8s Job to Slurm
Job.

3. Slurms runs the job (as the host
user).

4. Proxy keeps Slurm and Master in
sync.

Kubernetes Master

K8s Proxy

Slurm

Lustre

1

4

Node Node Node

2

3

Compute Cluster

K8s Proxy:
1. Parses YAML fields from k8s

requests.
2. Generates equivalent sbatch scripts.
3. Stores the sbatch script (init.sh) in

Lustre.

Supported Fields:
● Container image to run
● Resource Requirements
● Volumes to be mounted
● … and more …

Job Translation

10

Kubernetes Master

K8s Proxy

kubectl demo.yaml

$HOME/.hpk/demo/init.sh

Lustre

Node Node Node

Compute Cluster

K8s requires certain data to be present.
○ Credentials, Configs, …

Application needs scratch space for the
runtime.

○ Logs, temporary files, …

User needs access to persistent storage.
○ Load dataset, write results.

11

Volume Preparation

K8s Proxy:
1. Convert volumes into Lustre files/dir.

a. Downloads volumes data from
master.

b. Create temp dir for scratch.
c. Create symlinks to other Lustre files.

2. Set the volume paths in init.sh.

K8s Proxy

Lustre

Node Node Node

Compute Cluster

Kubernetes Master

$HOME/.hpk/demo/volumes/*

K8s Proxy: Submits /demo/init.sh to
Slurm.

Slurm: Schedules job to the compute
nodes.

Compute node: Runs the init.sh locally.

Init.sh: Mounts /demo/volumes/* to the
container.

12

Job Execution

K8s Proxy

Lustre

Node Node Node

Compute Cluster

Slurm

How does Kubernetes now the status of
the job ?

Init.sh
Through its execution, it creates Control
Files on Lustre to indicate the state of
execution.

K8s Proxy:
● Tracks changes on Control Files by

using an Inotify-like mechanism.
● Updates the job’s status according to

defined semantics.
● Updates Kubernetes master about the

new status.
13

Job Monitoring

K8s Proxy

Lustre

Node Node Node

Compute Cluster

Kubernetes Master

14

How a Job looks like

Lustre

Compute Cluster

Singularity is the reference
container technology for HPC.

● Daemonless: just a binary.

● Rootless: runs as a simple
user.

● Integrated: inherits user’s
env and mountpoints.

● Backward-compatible with
Docker images.

Slurm Node

$ singularity run -B src[:dest] docker://ubuntu

demo/init.sh

$ singularity run -B src[:dest] docker://spark

spark/init.sh

$ singularity run -B src[:dest] docker://tensorflow

tensorflow/init.sh

15

Rootless containers

Compute Cluster

Execute container runtimes as
an unprivileged user, by using
Linux User Namespaces.

User Mapping: map UIDs/GIDs
in the container namespace to
unprivileged range in the host
namespace.

● Within container: root:root
● Outside container:

user:group

Fakeroot Capabilities: Full
capabilities, except for inserting
kernel modules, rebooting, …

Slurm Node

Lustre

16

… But not exactly what we want

Compute Cluster

Kubernetes attributes its
success to the concept of
Multi-Container Pods.

The Pod is Logical group of
containers with shared storage
and network resources.

Issue: How can we support
Pods with Singularity ?

Slurm Node

Lustre

17

Rootful Pods (Docker)

Compute Cluster

Pause container:
Empty container which
establishes namespaces and
reservations before individual
containers are created.

Main Containers:
Containers are created on the
host namespace, and then join
the namespace of the pause
container using nsenter
command.

Issue: nsenter requires root.

Slurm Node

Parent Container Pause_Container

Container_A Container_B

1. Run a pause container.

2. Create containers in the host namespace.
3. Join containers in the pause namespace.

Lustre

18

Rootless Pods (nested containers)

Compute Cluster

Step 1:

Run a pause container.

Step 2:

Within the pause container, load
and run init.sh.

Step 3:

The script creates the
containers.

Limitations: all containers must
be known in advance.

Slurm Node
1. Run a pause container.

3. Create containers within pause namespace

2. Load init.sh from Lustre
Pause

Container

Container_A

demo/init.sh

Container_B

Lustre

19

What about object storage ?

Minio is an S3-compatible
implementation that is already
Kubernetes-native.

Issue #1: Minio, like most other
tools, is web-based and requires a
routable IP.

Issue #2: You can’t pollute the host
IP range.

Issue #3: How can Minio servers
become discoverable?

10.244.2.3

10.244.2.4
10.244.5.2

10.244.7.10

20

Container Networking

● Within the Pod, we create a
network namespace.

● The namespace takes IPs
from flanneld that runs on the
host.

● Flannel implements
container-to-host and
host-to-host by modifying the
routing tables of the host.

Compute Cluster

Lustre

Node #2

PodPod

flanneld

RDMA

Node #7

Pod

flanneld

RDMA

10.244.2.3
10.244.2.4

10.244.7.10

21

Service Discovery

CoreDNS: DNS records for
Kubernetes.

● Exclude load balancing
as it requires changes
on iptables.

● Support direct
Service-To-Pod
mappings.

22

Demo: Genotype Analysis Workflow

Argo Workflows + Minio

Compute
Node

Kubernetes over Slurm

Overlay
Networking

Virtual
NodeUser job

23

Key Takeaways

● Objective: Run Kubernetes on Slurm.

● Challenges
○ Easy Deployment

■ All key components (API server, etcd, CoreDNS, …) are packaged in a container.
○ Rootless execution

■ Implemented using Singularity containers.
○ Pod Support

■ Implemented using nested containers.
○ Network Services

■ Implemented using flanneld.

● Available at Github: https://github.com/CARV-ICS-FORTH/HPK

● System requirements:
○ Singularity should allow running as fakeroot.
○ Singularity configured with Flannel (or other CNI) for assigning cluster-wide IPs.

Thank you !

We thankfully acknowledge the support of the European Commission and the Greek General
Secretariat for Research and Innovation under the EuroHPC Programme through project EUPEX
(GA-101033975). National contributions from the involved state members (including the Greek

General Secretariat for Research and Innovation) match the EuroHPC funding.

25

User Namespaces

26

Challenge: Networking

27

Challenge: Networking

28

Challenge: Networking

29

“Side”

Setup: Partition K8s and Slurm nodes.1

● Pros:
○ Full access to k8s capabilities
○ Full access to Slurm capabilities

● Cons:
○ Poor Interfacing between k8s and Slurm.
○ Data transfers from one partition to another.
○ Doubles the maintenance cost.

1 KNoC is a Kubernetes node to manage container lifecycle on HPC clusters (InteractiveHPC 2022) https://github.com/CARV-ICS-FORTH/knoc

30

“Under”

Setup: Run Slurm cluster(s) within a K8s environment.2

● Pros:
○ Elastic use of Cloud resources.
○ Portability of HPC solutions across Cloud.
○ Traditional experience for Slurm users.

● Cons:
○ Does not address the site underutilization

issue.

2 Genisys is a Kubernetes scheduler for running HPC jobs inside Virtual Clusters alongside other services (VHPC’22) https://github.com/CARV-ICS-FORTH/genisys

31

“Adjacent”

Setup: Run both Slurm and k8s on the same nodes.

● Pros:
○ Full access to Slurm capabilities
○ Full access to k8s capabilities
○ No data transfers required.

● Cons:
○ Security concerns (k8s runs as root)
○ Resource conflicts (nodes vs pods)
○ Increased Maintenance costs

32

Our vision - “Over”

Setup: Run K8s cluster(s) within unmodified Slurm
environment.

Design Goals:

1. Create ephemeral k8s clusters as user jobs.
2. Support all Kubernetes abstractions, except privileged.
3. Scale across all nodes of the cluster.
4. Minimal pre-installed software.

