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Non-Volatile Main Memory (NVMM)
NVRAM, NVDIMM

Intel-Micron 3D XPoint memory modules (2017)
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A huge opportunity

Building highly efficient Fault-tolerant Cloud Applications

Any interactive application

In-memory KV store

Our focus: Multi-threaded applications

Some challenges

Performance not on par with DRAM (6-8X slower write throughput)

Intermediate caches can impair data persistence and consistency
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Work directions

Main research questions

What API should be provided to programmers?

What technique to efficiently save data in NVMM?
▶ In a server including only NVMM
▶ In a hybrid DRAM-NVMM server
▶ In a remote NVMM server

2024 4



Main results

About APIs
Providing a simple API to programmer provides huge advantages compared to
transparent solutions
▶ Concept of Restart Points

Techniques to save data

NVMM-only: InCLL combined with Restart Points is the best technique
(Khorguani et al., Eurosys 2022)

Hybrid servers: No single best technique

Remote NVMM: Redo-logging seems to be the best approach (WIP)
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Using NVMM for fault tolerance

core core

cache cache

LLC

MC

DRAM NVMM

Consistent state and performance

Data movements between the cache and the
memory can be controlled by the application
▶ Explicit flush of cache lines (Slow)

On cache-line eviction, data might be
written out-of-order to memory
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Cache-line eviction and consistent state
Produce in Producer-Consumer algo (FIFO Queue)

int index;

type buffer[SIZE];

void produce(type item){

lock(&mutex)

buffer[index] = item;

index++;

unlock(&mutex)

}

A BA B C

cl2 cl3 cl4 cl5

cl1: Index = 2cl1: Index = 3

In cache:

A B

Index = 2Index = 3

In NVMM:

The state in NVMM can become inconsistent
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Cache invalidation guarantees a consistent state
Using clwb + MFENCE
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Solution for NVMM-only servers



ResPCT

Periodic synchronization with
NVMM

High frequency checkpoints

Flush modified data from
cache to NVMM

Programmers identify Restart
Points

Points in the execution where
a checkpoint can be taken
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ResPCT

Periodic synchronization with
NVMM

High frequency checkpoints

Flush modified data from
cache to NVMM

Programmers identify Restart
Points

Points in the execution where
a checkpoint can be taken

void produce(type item){
lock(&mutex)
buffer [ index ] = item;
index++;
unlock(&mutex)

RP()
}
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In-Cache-Line Logging
Adapted from Cohen et al., ASPLOS 2019

An undo-log inside each cache line

We fully avoid Flush/Fence instructions outside checkpoints
▶ We take advantage of the x86 guarantees regarding writes the same cache line

We allow some inconsistencies in NVMM
▶ But we are always able to roll-back

We also use InCLL to track modifications at no extra cost
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Experimental setup

Hardware and software setup:

A single server with two Intel Xeon Gold 5218 CPUs (64 logical cores)

384 GiB of DRAM and 1.5 TiB of Intel’s Optane PMem

Prototype of ResPCT in C

Checkpoint period - 64 msec

Evaluated workloads:

Highly efficient concurrent HashMap (2M items)

Memcached - a popular in-memory key-value store
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Results for the HashMap
90% of updates
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ResPCT speed-up over best competitor: 1.36X

ResPCT slowdown compared to non-modified hashmap: 8.3X
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Performance with Memcached
1M operations
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Overhead for the read-intensive workload: 5%

Overhead for the write-intensive workload: 18.5%
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The case of hybrid servers



The limits of the NVMM-only approach
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Performance is limited by the speed of NVMM
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The hybrid approach

The application interacts with
DRAM

NVMM stores backups

Transfer from DRAM to
NVMM during checkpoints
▶ Transfer of the modified

parts of the memory
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New questions

What technique to use for consistent data transfer?
▶ No issue with cache-line invalidation but the server might still crash in the

middle of the transfer
▶ We evaluated the main approaches from SOA:

▶ InCLL (Undo log)
▶ Redo log [Aksun, EPFL 2021]
▶ Dual copy [WU et al., PLDI 2020]

What granularity to use for tracking modifications?

What granularity to use for flushing modifications?
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The Redo-Logging approach

Checkpointing: Write a redo log of modifications to NVMM
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The Redo-Logging approach

The state update is done in the background
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The Dual-Copy approach

One copy is updated in a given checkpoint
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The Dual-Copy approach

The other copy is updated in the next checkpoint (The previous copy becomes the
backup)
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Results for the HashMap (Read-intensive workload)
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Best results with Redo Logging

Slowdown to Transient: 1.6X – Speedup to ResPCT: 2.7X
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Results for the HashMap (Write-intensive workload)
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Best results with Dual Copy
About the tracking granularity:
▶ Small: More overhead for tracking, less for flushing
▶ Large: Less overhead for tracking, more for flushing
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Remote NVMM



Saving data in Remote NVMM
RDMA writes to NVMM can be made persistent

By de-activating DDIO

Issuing a flush after the write operation

Our approach

Same checkpointing approach as before

Algorithm:
▶ Writing a Redo-Log to Remote NVMM using RDMA
▶ Updating the persistent state in the background

2024 26



Saving data in Remote NVMM
RDMA writes to NVMM can be made persistent

By de-activating DDIO

Issuing a flush after the write operation

Our approach

Same checkpointing approach as before

Algorithm:
▶ Writing a Redo-Log to Remote NVMM using RDMA
▶ Updating the persistent state in the background

2024 26



Preliminary results with MemCached (1M Keys)
Network used: Omni-Path 100G
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Important for performance: Writing large memory blocks
▶ Otherwise performance is limited by the network latency
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Conclusion



Main results

A new approach for saving application state to NVMM

Periodic checkpoints

Restart Points specified by the programmer

Performance
Better performance than SOA:
▶ NVMM-only: InCLL
▶ Hybrid servers: Dual Copy or Redo Logging

Best technique depends on the considered hardware architecture
▶ Redo Logging is the most promissing for Remote NVMM
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Future Directions

Consider other technologies (PEPR Cloud)

NVMe
▶ Ability to do remote writes directly to NVMe devices?
▶ WiP: Go through an intermediate copy in remote DRAM

CXL memory expanders
▶ Support for flush operations included
▶ Expanders start appearing
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