
Catherine Guelque , Philippe Swartvagher , Valentin Honoré , François Trahay

 Télécom SudParis, Institut Polytechnique de Paris, Inria Benagil

 Bordeaux INP, Inria Topal

60

50

40

30

20

10

 0

0 10 50 6020 30 40

Receiver Rank

S
e

n
d

e
r

R
a

n
k

S
iz

e
 (

M
B

)

0

50

100

150

200

250

Communication matrix for

NAS CG on 64 processes

MPI_Send()

compute()

MPI_Recv()

MPI_Send()

compute()

MPI_Recv()

MPI_Barrier()

MPI_Recv()

Example of a

sequential trace

x 200

MPI_Send()

compute()

MPI_Recv()

MPI_Barrier()

MPI_Recv()

200 * Sequence 1

1 * Sequence 2

Example of a

Pallas trace

Evaluations

Comparison with Pilgrim (pattern recognition and

compression) and OTF2 (sequential format with timestamp

encoding).

Negligible overhead for most applications (1-10%) except

for irregular ones (57% for Quicksilver)

Trace size lies between OTF2 and Pilgrim

Pilgrim intercepts less function and compresses all

timestamps at once → Smaller traces, better compression

Compression can reduce Pallas trace size by a factor of 10

Pallas: HPC Trace

analysis at scale

Contact catherine.guelque@ip-paris.fr

Context: performance analysis at exascale
Investigating performance problems

Many sources of performance problems at scale

Collective communication, load imbalance, network

contention, NUMA effects, ...

Finding a bottleneck requires investigation

Run the application once, analyze its execution trace

Applications mix programming models (MPI+OpenMP,

MPI+CUDA), and libraries (StarPU, netcdf, Pytorch, ...)

Need for generic, modulable tracing tools

Proposal: Pallas trace format

Detecting sequences of events for

better data analysis

Intercepted functions are grouped by

call signature as Tokens.

Their durations are stored for analysis.

Repetition of similar functions are

detected using memcmp and stored

as loops, allowing for better view of

the structure of the trace.

Analyzing huge performance data
Finding the needle in the haystack

Traces are records of execution made for post-mortem

analysis

Store detailed information.

Can take huge amounts of storing space

Require a lot of processing before being useful

Gets worse with execution time and number of threads used.

Traces of HPC applications have recurring patterns, which

means they have a lot of redundant data.

Conclusion

Low overhead (<5%) for regular

applications

Reasonable trace size compared to

alternatives

Quick and memory-light analyses

Provide trace visualization tools

Pattern detection for irregular applications

Develop complex trace analysis methods

Tracing non-MPI kernels (CUDA, StarPU etc)

Performance analysis at scale (TBs of data)

Provide better compression techniques

Ongoing work

Analysis-optimized trace storage

Separating data from

metadata

One folder per MPI rank

Header file with general

information (lightweight)

Data file with durations:

Efficient compression

Easily removable

On-demand loading

Trace analysis

We have implemented two analysis tools for

OTF2, Pallas and Pilgrim: one to plot a

communication matrix, the other to detect

contention.

Both Pilgrim and Pallas run the tools near-

instantaneously.

Pallas uses a lot less memory than Pilgrim.

