Pallas: HPC Trace
analysis at scale

Catherine Guelque®, Philippe Swartvagher*
[élécom SudParis, Institut Polytechnique de Paris, Inria Benagil

TELECOM
SudParis

4 s d

Institut Mines-Téeléecom

, Valentin Honoré®, Francois Trahay”*

A Bordeaux INP, Inria Topal

Context: performance analysis at exascale
Investigating performance problems

« Many sources of performance problems at scale
o Collective communication, load imbalance, network
contention, NUMA effects, ...
« Finding a bottleneck requires investigation
o Run the application once, analyze its execution trace
« Applications mix programming models (MPI+OpenMP,
MPI+CUDA), and libraries (StarPU, netcdf, Pytorch, ...)
- Need for generic, modulable tracing tools

Andlyzing huge performance data
Finding the needle in the haystack
« [races are records of execution made for post-mortem
analysis
o Store detailed information.
o Can take huge amounts of storing space
o Require a lot of processing before being useful
« Gets worse with execution time and number of threads used.
« Traces of HPC applications have recurring patterns, which
means they have a lot of redundant data.

Example of a

Proposal: Pallas trace format

Detecting sequences of events for
petfter data analysis
o Intercepted functions are grouped by

call signature as Tokens.
« Their durations are stored for analysis.

MPI_Send()

MPI_Recv()

Example of a
sequential frace Pallas trace

MPI_Barrier()

Analysis-optimized trace storage

Separating data from 1l
metadata

« One folder per MPI rank
- Header file with general
iInformation (lightweight)
« Data file with durations:
o Efficient compression
o Easily removable

nb_threads, compression, MPL_rank, ... Archive header

Tokens 11 -

Sequences[I - [T

Thread 0

Tokens [11 -

MPI_Recv()

Sequences[ITH] - [T

MPI_Recv
- Repetition of similar functions are
detected using memcmp and stored T x 200
as loops, allowing for better view of (rimrrier0)
the sfructure of the trace. (verrecv0)

Timestamps/Durations
(IENEEENEEENEENEEENEEEEEEEENENEEEEEENENEEENEEREENE]

o On-demand loading

Thread 1

Evaluations

Comparison with Pilgrim (pattern recognition and
compression) and OTF2 (sequential format with fimestamp
encoding).
« Negligible overnead for most applications (1-10%) except
for irregular ones (5/% for Quicksilver)
o Trace size lies between OTF2 and Pilgrim
 Pilgrim infercepts less function and compresses all
fimestamps at once — Smaller traces, better compression
« Compression can reduce Pallas trace size by a factor of 10

Size of traces for different kernels.

I OTF2 W Pallas W Pilgrim

Time to plot a communication matrix

Communication matrix for
NAS CG on 64 processes

Trace analysis

We have implemented two analysis tools for
OTF2, Pallas and Pilgrim: one to plot a
communication matrix, the ofther 1o detect
contention.
« Both Pilgrim and Pallas run the tools near-
INnstfantaneously.
 Pallas uses a lot less memory than Pilgrim.

Sender Rank

0 10

20 30 40
Receiver Rank

50 60

Memory consumption to plot a communication matrix

from different trace formats. from different trace formats.

Bl OTF2 T Pallas BN Pilgrim BN OTF2 T Pallas BN Pilgrim
104 PR
= _ 401 /M 31
3 P <
210 £ 30 >
: 2
E .2 201 >
1074 § %‘1
%10 é
WO P S @ o b P I-. B- L_I... . B |
L L IR S G O G 0 0
SN R @3% o @5\) ?;5@ A\ \ff) \()Q \O AP A\ ﬁooQ \60 ‘3 \60 VRV ﬁ%Q
6‘% o0 e ?ﬁ G \3 @6 X7\ 6‘% AR G \3 @6 N NN
Overhead for different Kernels B o &I\Q P»g S P»s '(‘}59 b o &I\Q P:D % P& S P»s 'c}@x
: $ AR = Q> NN N AN o>

N OTF2 [Pallas

I Pilgrim

60%

Overhead
N
S
&

20%

0%

Conclusion

« Low overhead (<5%) for regular
applications

« Reasonable trace size compared 1o
alternatives

« Quick and memory-light analyses

Ongoing work

« Provide frace visuadlization tfools

Pattern detection for irregular applications
Develop complex trace analysis methods
Tracing non-MPI kernels (CUDA, StarPU etc)

Performance analysis at scale (IBs of data)
Provide better compression fechnigues

Contact catherine.guelque@ip-paris.fr

