Using Control Theory to Reduce Disk Congestion Caused by Unpredictable I/O in Cloud Computing

Per3S Workshop - Thomas Collignon

28/05/2024

DE ME

Qarnot infrastructure

QBox

- Task distribution
- Download of tasks' input data
- Upload of results
- Shared storage for the tasks

I/O congestion on the QBox's storage

Background tasks

- Data traffic
 - Downloads
 - Uploads
- Task Checkpointing
- Cache handling

Computing tasks

• Varied I/O profiles

The performance of Computing Tasks can be degraded by I/Os interferences with other tasks.

How to improve the performances of computing tasks by controlling disk I/Os ?

Control Theory

- Autonomic Computing
- Actions on the system at runtime
- Supports disturbances (new computing tasks ...)

The I/O problem is inherently hard to predict so Control Theory is a good candidate to solve it at runtime.

Control strategies

QARNOT

Actuators for the selected problems :

Data traffic

- Bandwidth
- Delay

Cache Handling

- Garbage collector Delay, but user
- Cache strategy

Checkpointing

- Delay, but user constraints

Actuator for all the tasks:

cgroups

- Memory
- I/O bandwidth
- CPU

Using Control Theory to Reduce Disk Congestion Caused by Unpredictable I/O in Cloud Computing

Thomas Collignon

Thank you for your attention,

Let's discuss at the poster session !

